Bağlamsal doğrulama içerisinde ek özellik olarak klavye dinamiği analizi ve değerlendirilmesi
Analysis and evaluation of keystroke dynamics as a feature of contextual authentication
- Tez No: 655331
- Danışmanlar: PROF. DR. ALİ AYDIN SELÇUK
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: Türkçe
- Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 50
Özet
Tuş Vuruş Dinamikleri, kullanıcının kimliğinin doğruluğuna karar vermek için bireylerin tuş vuruş davranışlarını incelememize yardımcı olan bir davranışsal-biyometri çözümüdür; ancak, bu yaklaşımın dezavantajı, nispeten yüksek yanlış negatif ve yüksek yanlış pozitif oranlara sahip olmasıdır. Bu çalışmada, farklı anomali tespit yaklaşımlarını karşılaştırıyor ve bu çözümleri birleştirdiğimizde performans gelişmelerini inceliyoruz. Önce tuş vuruşu dinamikleri ve oturum bağlamı anomali bileşenlerini ayrı ayrı oluşturduk. Ardından, bu makine öğrenimi bileşenlerinin sonuçlarının nasıl birleştirileceğini inceledik. Deneylerimiz, bu bileşenlerden ağırlıklı ortalama topluluk modelini oluşturmak performansı artırırken, yeni bir özellik olarak oturum bağlam anomali bileşenine tuş vuruşu dinamikleri puanlarını dahil etmek sadece tuş vuruşu dinamiği puanlarını değil, aynı zamanda bu puanlar arasında değişimleri de gözlemleyebildiği için daha iyi performans sağladığını gözlemledik.
Özet (Çeviri)
Keystroke Dynamics is a behavioural-biometrics solution that helps us to examine individuals' keystroke behaviour to decide legitimacy of the user; however, the drawback of this approach is that it has relatively high false negative and high false positive rates. There are some other anomaly detection approaches which examine more static properties like user's contextual details such as IP address, screensize, browser type etc. to detect legitimacy of the user but these approaches also suffer from false alerts. In this study, we compare different anomaly detection approaches and observe performance improvements when we combine these solutions. We first built keystroke dynamics and session context anomaly components, separately. Then, we examined how to combine the results of these machine learning components. Our experiments showed that while using weighted average ensemble model from these components improved performance, another approach which was to include keystroke dynamics scores in session context anomaly component as a new feature gives the opportunity to capture not only the keystroke dynamics scores but also the deviations of these scores and thus yields better performance
Benzer Tezler
- Fake news classification using machine learning and deep learning approaches
Makine öğrenimi ve derin öğrenme yaklaşımlarını kullanarak sahte haber sınıflandırması
SAJA ABDULHALEEM MAHMOOD AL-OBAIDI
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ TUBA ÇAĞLIKANTAR
- Parametric investigation of mechanical properties of auxhex unit cell sandwich structures
Auxhex birim hücreli sandviç yapıların mekanik özelliklerinin parametrik olarak incelenmesi
KADİRCAN SAYGI
Yüksek Lisans
İngilizce
2024
Havacılık ve Uzay Mühendisliğiİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ KAAN YILDIZ
- Yerel görünüm ve derin modeller kullanarak hibrit bir yüz tanıma yaklaşımı
A hybrid face recognition approach using local appearance and deep models
MERT ARI
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. HAZIM KEMAL EKENEL
- Obfuscated JavaScript detection using syntactically and lexically enhanced machine learning
Perdelenmiş JavaScript kodlarının sözdizimsel ve anlamsal yönden iyileştirilmiş makina öğrenmesi ile tespiti
EREN KILIÇ
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET TAHİR SANDIKKAYA
- Development and characterization of surgical locally oxidised regenerated cellulose hemostats
Cerrahi lokal olarak oksitlenmiş rejenere selüloz hemostatların geliştirilmesi ve karakterizasyonu
BEYZA ŞEREMET
Yüksek Lisans
İngilizce
2024
Tekstil ve Tekstil Mühendisliğiİstanbul Teknik ÜniversitesiTekstil Mühendisliği Ana Bilim Dalı
DOÇ. DR. İKİLEM GÖCEK