Geri Dön

Bağlamsal doğrulama içerisinde ek özellik olarak klavye dinamiği analizi ve değerlendirilmesi

Analysis and evaluation of keystroke dynamics as a feature of contextual authentication

  1. Tez No: 655331
  2. Yazar: OĞUZHAN SALMAN
  3. Danışmanlar: PROF. DR. ALİ AYDIN SELÇUK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 50

Özet

Tuş Vuruş Dinamikleri, kullanıcının kimliğinin doğruluğuna karar vermek için bireylerin tuş vuruş davranışlarını incelememize yardımcı olan bir davranışsal-biyometri çözümüdür; ancak, bu yaklaşımın dezavantajı, nispeten yüksek yanlış negatif ve yüksek yanlış pozitif oranlara sahip olmasıdır. Bu çalışmada, farklı anomali tespit yaklaşımlarını karşılaştırıyor ve bu çözümleri birleştirdiğimizde performans gelişmelerini inceliyoruz. Önce tuş vuruşu dinamikleri ve oturum bağlamı anomali bileşenlerini ayrı ayrı oluşturduk. Ardından, bu makine öğrenimi bileşenlerinin sonuçlarının nasıl birleştirileceğini inceledik. Deneylerimiz, bu bileşenlerden ağırlıklı ortalama topluluk modelini oluşturmak performansı artırırken, yeni bir özellik olarak oturum bağlam anomali bileşenine tuş vuruşu dinamikleri puanlarını dahil etmek sadece tuş vuruşu dinamiği puanlarını değil, aynı zamanda bu puanlar arasında değişimleri de gözlemleyebildiği için daha iyi performans sağladığını gözlemledik.

Özet (Çeviri)

Keystroke Dynamics is a behavioural-biometrics solution that helps us to examine individuals' keystroke behaviour to decide legitimacy of the user; however, the drawback of this approach is that it has relatively high false negative and high false positive rates. There are some other anomaly detection approaches which examine more static properties like user's contextual details such as IP address, screensize, browser type etc. to detect legitimacy of the user but these approaches also suffer from false alerts. In this study, we compare different anomaly detection approaches and observe performance improvements when we combine these solutions. We first built keystroke dynamics and session context anomaly components, separately. Then, we examined how to combine the results of these machine learning components. Our experiments showed that while using weighted average ensemble model from these components improved performance, another approach which was to include keystroke dynamics scores in session context anomaly component as a new feature gives the opportunity to capture not only the keystroke dynamics scores but also the deviations of these scores and thus yields better performance

Benzer Tezler

  1. Fake news classification using machine learning and deep learning approaches

    Makine öğrenimi ve derin öğrenme yaklaşımlarını kullanarak sahte haber sınıflandırması

    SAJA ABDULHALEEM MAHMOOD AL-OBAIDI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TUBA ÇAĞLIKANTAR

  2. Parametric investigation of mechanical properties of auxhex unit cell sandwich structures

    Auxhex birim hücreli sandviç yapıların mekanik özelliklerinin parametrik olarak incelenmesi

    KADİRCAN SAYGI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Havacılık ve Uzay Mühendisliğiİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ KAAN YILDIZ

  3. Yerel görünüm ve derin modeller kullanarak hibrit bir yüz tanıma yaklaşımı

    A hybrid face recognition approach using local appearance and deep models

    MERT ARI

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HAZIM KEMAL EKENEL

  4. Obfuscated JavaScript detection using syntactically and lexically enhanced machine learning

    Perdelenmiş JavaScript kodlarının sözdizimsel ve anlamsal yönden iyileştirilmiş makina öğrenmesi ile tespiti

    EREN KILIÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MEHMET TAHİR SANDIKKAYA

  5. Development and characterization of surgical locally oxidised regenerated cellulose hemostats

    Cerrahi lokal olarak oksitlenmiş rejenere selüloz hemostatların geliştirilmesi ve karakterizasyonu

    BEYZA ŞEREMET

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Tekstil ve Tekstil Mühendisliğiİstanbul Teknik Üniversitesi

    Tekstil Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İKİLEM GÖCEK