Geri Dön

Multivariate forecasting of global horizontal irradiation using deep learning algorithms

Derin öğrenme algoritmaları kullanarak küresel yatay ışınlamanın çok değişkenli tahmini

  1. Tez No: 663419
  2. Yazar: NURAY VAKİTBİLİR
  3. Danışmanlar: DR. ÖĞR. ÜYESİ CEM DİREKOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Enerji, Energy
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Orta Doğu Teknik Üniversitesi
  10. Enstitü: ODTÜ Kuzey Kıbrıs Kampüsü-Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Sürdürülebilir Çevre ve Enerji Sistemleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 125

Özet

Artan fotovoltaik (PV) panel kurulumları, özellikle Kıbrıs gibi ada ülkelerinde elektrik şebekesi frekansını tehlikeye atıyor. Kuzey Kıbrıs'ta PV kurulumlarında sürekli bir büyüme ve aynı zamanda güç üretiminde geleneksel enerji kaynaklarının minimum kullanımı için, bir şebeke yöneticisinin PV panellerinin enerji üretimi hakkında bilgi sahibi olması, dolayısıyla alınan radyasyon, yani Küresel Yatay Işınlama (GHI) hakkında bilgi sahibi olması son derece önemlidir. Bu nedenle, GHI tahmini Kuzey Kıbrıs'ta yenilenebilir enerjinin büyümesinde önemli bir rol oynamaktadır. Bu çalışma, Kuzey Kıbrıs Kalkanlı için uzun vadeli ve kısa vadeli GHI tahminine odaklanmaktadır. Uzun vadeli tahminler için NASA'dan bir veri seti elde edilirken, kısa vadeli GHI tahmini ODTÜ KKK'da kaydedilen bir veri seti ile gerçekleştirilmiştir. Uzun vadeli GHI tahmini için Evrişimli Sinir Ağı (CNN) ve Uzun Kısa Süreli Bellek (LSTM) algoritmaları kullanılmıştır. Kısa vadeli GHI tahmininde CNN ve LSTM algoritmalarına ek olarak Destek Vektör Regresyonu (SVR) kullanılmıştır. Her iki veri kümesi için de hibrit ve bağımsız modeller oluşturulmuş ve performansları kapsamlı bir şekilde değerlendirmiştir. Ek olarak, CNN, LSTM ve SVR'nin hibrit modeli ile kısa vadeli GHI tahmini için mevsimsel tahmin gerçekleştirilmiştir.

Özet (Çeviri)

Increasing photovoltaic (PV) panel instalments jeopardise the electrical grid frequency, especially in island countries, such as Cyprus. For a continuous growth in the PV instalments in Northern Cyprus as well as minimal usage of conventional energy sources in power generation, it is of utter importance for a grid manager to possess information on the energy production of PV panels, hence knowledge on received radiation, i.e. Global Horizontal Irradiation (GHI). Therefore, the prediction of GHI plays an essential role in the growth of renewable energy in Northern Cyprus. This study focuses on forecasting long-term and short-term GHI for Kalkanlı, Northern Cyprus. For long-term forecasting, a dataset is obtained from NASA while the short-term GHI prediction is carried out with a dataset recorded at METU NCC. Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) algorithms are employed for the long-term GHI forecasting. Support Vector Regression (SVR) is employed in addition to CNN and LSTM algorithms in the short-term GHI estimation. For both datasets, hybrid and stand-alone models are constructed, and their performances evaluated extensively. Additionally, seasonal forecasting is carried out for the short-term GHI estimation with a hybrid model of CNN, LSTM and SVR.

Benzer Tezler

  1. Homojen ve heterojen evrimsel sosyal ağlarda bağlantı tahmini

    Link prediction in evolving homogeneous and heterogeneous networks

    ALPER ÖZCAN

    Doktora

    Türkçe

    Türkçe

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞULE ÖĞÜDÜCÜ

  2. Gemi yapılarında gerilme yığılması öngörülerinin kaba ağ yapısı ve makine öğrenmesi ile gerçekleştirilmesi

    The forecasting of stress concentration in ship buildings by using rough mesh structure and machine learning method

    BURÇİN ATEŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Gemi Mühendisliğiİstanbul Teknik Üniversitesi

    Gemi ve Deniz Teknoloji Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SERDAR AYTEKİN KÖROĞLU

  3. Leveraging transformer models for enhanced time series forecasting of export amounts

    İhracat miktarlarının gelişmiş zaman serisi tahmini için transformatör modellerinden yararlanma

    ÇAĞRI COŞKUN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtılım Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    DOÇ. DR. BEYTULLAH YILDIZ

    PROF. DR. ALİ YAZICI

  4. Pre-release forecasting of imdb movie ratings using multi-view data

    Gösterime girmemiş filmlerin ımdb puanının farklı özellik kümeleri kullanılarak tahmin edilmesi

    BEYZA ÇİZMECİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞULE ÖĞÜDÜCÜ

  5. Finansal zaman serilerindeki oynaklığın çok değişkenli GARCH modelleri ile analizi

    Analysis of the volatility in financial time series using multivariate GARCH models

    MEHMET OZAN ÖZDEMİR

    Doktora

    Türkçe

    Türkçe

    2020

    EkonometriDokuz Eylül Üniversitesi

    Ekonometri Ana Bilim Dalı

    DOÇ. DR. HAMDİ EMEÇ