Geri Dön

Metin sınıflandırma için öznitelik seçimi ve globalleştirmenin etkisi

Feature selection for text classification and the effect of globalisation

  1. Tez No: 665461
  2. Yazar: BEKİR PARLAK
  3. Danışmanlar: DOÇ. DR. ALPER KÜRŞAT UYSAL
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: Türkçe
  9. Üniversite: Eskişehir Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Bilimleri Bilim Dalı
  13. Sayfa Sayısı: 79

Özet

Günümüzde internet hizmetlerinin artmasıyla her geçen gün metinsel veri üssel olarak artış göstermektedir. Bu metinlerin daha anlamlı ve kullanışlı hale gelebilmesi için metinlerin içeriklerine göre sınıflandırılması gerekmektedir. Bu sebeple otomatik metin sınıflandırma yaklaşımları oldukça önem kazanmıştır. Metin sınıflandırma yaklaşımlarının temel görevi metinleri içeriklerine göre sınıflara atamaktır. Metin içerikli dokümanları içeriklerine uygun sınıflara atayabilmek için birçok işlem adımları bulunmaktadır. Bunlar; öznitelik çıkartma, öznitelik seçimi, öznitelik ağırlıklandırma ve sınıflandırma işlemleridir. Metin sınıflandırma başarımını artırabilmek için bu aşamaların her biri ayrı bir öneme sahiptir. Ancak öznitelik seçimi son yıllardaki çalışmalarda daha popüler hale gelmiştir. Bu tez çalışmasında, metin sınıflandırma için kullanılan lokal öznitelik seçim metotları üzerinde farklı globalleştirme (maksimum, toplam, ağırlıklı toplam) teknikleri kullanılarak performans karşılaştırması yapılmış ve literatürde var olan güncel öznitelik seçim metotlarının performansından daha yüksek performansa sahip yeni bir öznitelik seçim metodu önerilmiştir. Bu amaçla farklı karakteristiğe sahip veri kümeleri üzerinde globalleştirme tekniklerinin başarımı nasıl değiştirdiğini gözlemlemiş olduk. Ayrıca, özniteliğin koleksiyon bazlı ve sınıf bazlı skorlarını göz önünde bulundurarak, Ayrıntılı Öznitelik Seçimi (EFS) adında yeni bir öznitelik seçim metodu önerilmiştir.

Özet (Çeviri)

Nowadays, with the increase of internet services, textual data increases exponentially with each passing day. In order to make these texts more meaningful and useful, the texts should be classified according to their content. For this reason, automatic text classification approaches have gained importance. The main task of text classification approaches is to assign texts to classes according to their content. There are many steps to assign text-containing documents to classes suitable for their content. These are feature extraction, feature selection, feature weighting and classification processes. In order to increase the text classification performance, each of these stages has a special importance. However, feature selection has become more popular in recent years. In this thesis, performances were compared using different globalisation techniques (maximum, sum, weighted sum) on local feature selection methods used for text classification and a novel feature selection method with higher performance than the current feature selection methods in the literature are proposed. For this purpose, we have observed how globalisation techniques change performance on datasets with different characteristics. Also, considering the corpus-based and class-based scores of the feature, a new feature selection method is proposed, called Extensive Feature Selector(EFS).

Benzer Tezler

  1. Kısa metin sınıflandırma için öznitelik seçimi

    Feature selection for short text classification

    RASIM ÇEKİK

    Doktora

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ALPER KÜRŞAT UYSAL

  2. Dengesiz metin sınıflandırma için yeni yaklaşımlar

    New approaches to imbalanced text classification

    HANDE TİRYAKİ

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ALPER KÜRŞAT UYSAL

  3. Improving text classification performance with the analysis of lexical dependencies and class-based feature selection

    Sözcüksel bağımlılıkların ve sınıf bazlı öznitelik seçiminin analizi ile metin sınıflandırma performansında iyileştirme

    LEVENT ÖZGÜR

    Doktora

    İngilizce

    İngilizce

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TUNGA GÜNGÖR

  4. Fake news classification using machine learning and deep learning approaches

    Makine öğrenimi ve derin öğrenme yaklaşımlarını kullanarak sahte haber sınıflandırması

    SAJA ABDULHALEEM MAHMOOD AL-OBAIDI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TUBA ÇAĞLIKANTAR

  5. Etkin sınıflandırma için genetik algoritma tabanlı öznitelik alt küme seçimi

    Feature subset selection method for an effective classification based on genetic algorithm

    SHİMA AFZALİ VAHED MOGHADDAM

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    ÖĞR. GÖR. OKTAY YILDIZ