İçerik tabanlı oltalama saldırısı tespit sistemi
Classification of content based phishing attacks by machinelearning methods
- Tez No: 665572
- Danışmanlar: PROF. ÖZGÜR KORAY ŞAHİNGÖZ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: Türkçe
- Üniversite: İstanbul Kültür Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 50
Özet
Son yıllarda internet teknolojilerinin kaçınılmaz büyümesi nedeniyle gerçek dünyadaki sistemlerin neredeyse tamamı dijital platformlara aktarılıyor. Bu, özellikle ilgili hizmetlere her zaman ve her yerde konsept ile bağlanmamızı sağlayan mobil cihazlarla hayatımızın her alanında siber uzay kullanımını artırıyor. Bununla birlikte, bu kaçınılmaz genişleme, özellikle standart son kullanıcılar için birçok güvenlik ihlali de beraberinde getirir. Kimlik avı, bilgisayar korsanlarının kendilerini kolayca engelleyerek kullandıkları en çok tercih edilen saldırı türlerinden biridir. Bu tür saldırı, başlangıçta basit bir e-posta veya sosyal medya mesajı ile tetiklenir ve bu mesaj, esas olarak kurbanları kötü niyetli bir web sayfasına yönlendirir. Güvenlik yöneticileri için tespit edilmesi gerçekten zor saldırı türleridir. Bu nedenle, bu makalede içerik tabanlı bir kimlik avı tespit mekanizması önerilmektedir. Teklifte, en iyi eğitim modellerini seçmek için altı farklı makine öğrenimi modeli uygulanmaktadır. Deneysel sonuçlar, önerilen yaklaşımın çok sağlam olduğunu ve güvenlik yöneticileri için kabul edilebilir doğruluklar verdiğini göstermektedir.
Özet (Çeviri)
In recent years due to the inevitable growth of Internet technologies, almost all of the real world systems are transferred to digital platforms. This increases the use of cyberspace in every dimention of our lives especially with mobile devices which enable us to connect to related services in anytime and anywhere concept. However, this ineluctable expansion also brings lots of security breaches especially for standard end users. Phishing is one of the mostly preferred attack type that hackers use by easily hindering theirselves. This type attack is initilally triggered with a simple e-mail or social media message which mainly forward the victims to a malicious webpage. For security admins, they are really hard attack types to detect. Therefore in this paper a content based phishing detection mechanism is proposed. In the proposal about six different machine learning models are implemented to select the best training models. Experimental results show that the proposed approach are very robust and give acceptable accuracies for security admins.
Benzer Tezler
- Oltalama saldırılarının derin öğrenme tabanlı URL ve içerik analizi ile hibrit tespiti
Detection of phishing attacks by using deep learning based hybrid URL and content analysis
MEHMET KORKMAZ
Doktora
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BANU DİRİ
PROF. DR. ÖZGÜR KORAY ŞAHİNGÖZ
- Design and development of a secure and accessible web authentication alternative to FIDO2
FIDO2'ye alternatıf güvenli ve erişilebilir bir web kimlik doğrulama tasarımı ve gelıştirilmesi
AHMET DROBİ
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilişim Uygulamaları Ana Bilim Dalı
Prof. Dr. KEMAL BIÇAKCI
- Derin öğrenme ile içerik tabanlı siber tehdit tespiti
Content-based cyber threat detection with deep learning
EMRE KOÇYİĞİT
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BANU DİRİ
- Web sayfalarının görsel ve yapısal benzerliklerinin incelendiği ve indekslendiği bir arama motorunun tasarımı ve gerçekleştirimi
Design and implementation of a search engine which the visual and structural similarities of web pages are investigated and indexed
AHMET SELMAN BOZKIR
Doktora
Türkçe
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. EBRU SEZER
- A content boosted hybrid recommendation system
İçerik arttırımlı hibrit bir öneri sistemi
SEVAL ÇAPRAZ
Yüksek Lisans
İngilizce
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. SELİM TEMİZER