Geri Dön

2B görüntülerden 3B hacimsel görüntülerin oluşturulması

3D volumetric reconstruction from 2D images

  1. Tez No: 667497
  2. Yazar: ÇAĞLAR KILIKÇIER
  3. Danışmanlar: DOÇ. DR. ERSEN YILMAZ
  4. Tez Türü: Doktora
  5. Konular: Mühendislik Bilimleri, Engineering Sciences
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: Bursa Uludağ Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 110

Özet

Hacimsel görselleştirme yüzey görselleştirmeye göre daha yüksek işlem yükü gerektirir. Teknolojinin gelişmesine paralel olarak hacimsel görselleştirmeye olan ilgi son yıllarda artmıştır. Hacimsel görselleştirmede önemli zorluklardan bir tanesi ilgi duyulan bölgelerin transfer fonksiyonları aracılığı ile çıkarımıdır. Bu tez çalışmasında hacimsel görselleştirmede karşılan bu zorluğun çözümü için yüzey görselleştirmede sıklıkla kullanılan sınıflandırma temelli yaklaşım uygulanmıştır. Bu tezde önerilen yaklaşımda hacimsel görselleştirme işlemi iki aşamada gerçekleştirilmektedir. İlk aşamada görüntü işleme ile yerel sınırlar çıkartılmakta ve bu sınırlar makine öğrenmesi yöntemi ile birleştirilerek ilgi duyulan bölge (İDB) belirlenmektedir. İkinci aşamada ise bir transfer fonksiyonu aracılığı ile İDB hacimsel olarak görselleştirilmektedir. Önerilen yaklaşımın başarım analizi yapılırken gürültünün İDB ve hacimsel görüntü üzerindeki etkisi araştırılmıştır. Başarım analizi sonucunda önerilen yaklaşımın hacimsel görselleştirmeyi iyileştirdiği görülmüştür.

Özet (Çeviri)

Volumetric visualization requires higher processing load than surface visualization. In parallel with the development of technology, interest in volumetric visualization has been increased in recent years. One of the major challenges in volumetric visualization is the extraction of regions of interest through transfer functions. In this thesis, a classification-based approach, which is frequently used in surface visualization, has been applied to solve this challenge in volumetric visualization. In the approach proposed in this thesis, volumetric visualization process is carried out in two stages. In the first stage, local boundaries are extracted with the image processing and the region of interest (ROI) is determined by combining these boundaries with the machine learning methods. In the second stage, ROI is visualized volumetrically by using a transfer function. While analysing the performance of the proposed approach, the effect of the noise on the ROI and the volumetric image was investigated. As a result of the performance analysis, it was seen that the proposed approach improved the volumetric visualization.

Benzer Tezler

  1. Derin öğrenme ile cerrahi video anlama

    Surgical video understanding with deep learning

    ABDISHAKOUR ABDILLAHI AWALE ABDISHAKOUR ABDILLAHI AWALE

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilişim Sistemleri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DUYGU SARIKAYA

  2. A toolkit for three-dimensional reconstruction and visualization of weather radar images

    Meteoroloji radarı görüntülerinden üç-boyutlu geriçatım ve görselleştirme için bir araç takımı

    MUSTAFA AHMET PESEN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    MeteorolojiOrta Doğu Teknik Üniversitesi

    Jeodezi ve Coğrafi Bilgi Teknolojileri Ana Bilim Dalı

    DOÇ. DR. UĞUR MURAT LELOĞLU

  3. 3-D automatic segmentation and modelling of cartilage compartments in high-field magnetic resonance images of the knee joint

    Diz ekleminin yüksek alan manyetik rezonans görüntülerinde kıkırdak bölgelerini 3-B otomatik bölütleme ve modelleme

    CEYDA NUR ÖZTÜRK

    Doktora

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SONGÜL ALBAYRAK

  4. 2D/3D human pose estimation using deep convolutional neural nets

    Derin evrişimsel sinir ağları ile 2B/3B insan vücudu pozisyon kestirimi

    MUHAMMED KOCABAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ EMRE AKBAŞ

  5. Compressed sensing based 3D image reconstruction in digital breast tomosynthesis and micro-bioimaging

    Sayısal meme tomosentezinde ve mikro biyogörüntülemede sıkıştırılmış algılama tabanlı 3B görüntü geri çatma

    ADEM POLAT

    Doktora

    İngilizce

    İngilizce

    2018

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    DOÇ. DR. İSA YILDIRIM