Geri Dön

Classification of heart diseases with convolutional neural networks

Evrişimli sinir ağları ile kalp rahatsızlıklarının sınıflandırılması

  1. Tez No: 670624
  2. Yazar: BEKİR YAVUZ KOÇ
  3. Danışmanlar: DOÇ. DR. TANER ARSAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Kadir Has Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Mühendislik Bilimleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 86

Özet

Günümüzde kalp hastalıklarının sayısı ve sıklığı artmaktadır. Bu alanda iyileştirmeler yapılabilmesi için yüksek miktarda harcama yapılmaktadır. Kalbin elektriksel iletimindeki atımlar özel cihazlarla kaydedilebilir ve EKG (Elektrokardiyogram) oluşturulabilir. EKG'den üretilen veriler, Taylor Series algoritması ile faz uzaylarına dönüştürülebilir. Kalp hastalığının tespiti için 44 farklı kişiden alınan verilerle MLII sinyallerinden EKG ve faz uzayları oluşturuldu. Bu kayıtların kalp durumunu belirlemek için hem EKG görüntüleri hem de faz uzayı görüntüleri kullanıldı. Kayıtların kalp durumu görüntülere ve sonuçlara Convolutional Neural Networks (CNNs) yöntemi uygulandı ve SVM (Support Vector Machine) algoritması ile karşılaştırılarak başarı oranı ölçüldü. Ayrıca aynı kayıtlar üzerinden eğitim ve test seti değiştirilerek farklı modellerin başarı oranları karşılaştırıldı. EKG ile faz uzayı görüntülerine CNN algoritmasının verdiği sonuçlardaki farklılık tespit edildi.

Özet (Çeviri)

Nowadays, the number and frequency of heart diseases is increasing. High amounts of expenses are incurred in order to make improvements in this area. The beats in the electrical conduction of the heart can be recorded by special devices and ECG (Electrocardiogram) can be created. Data generated from ECG can be transformed into phase spaces with Taylor Series algorithm. In order to determine the detection of heart disease, ECG and phase spaces were created from MLII signals based on 44 different records. Both ECG images and phase space images were used to determine the heart conditions of these recordings. The heart status of the recordings was measured by applying Convolutional Neural Networks (CNNs) method to the images and results compared with the SVM (Support Vector Machine) algorithm. In addition, the success rates of different models were compared by changing the training and test set over the same records. The success rate between ECG and phase space was also determined.

Benzer Tezler

  1. Kalp seslerinin evrişimsel sinir ağları kullanılarak sınıflandırılması

    Classification of heart sounds using convolutional neural networks

    HATİCE ESRA ALTINIŞIK

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-Cerrahpaşa

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ABDURRAHİM AKGÜNDOĞDU

  2. Tek boyutlu hibrit evrişimsel sinir ağları ve uzun kısa süreli bellek mimarileri kullanarak EKG sinyallerinin sınıflandırılması

    Classification of ECG signals using one-dimensional hybridconvolutional neural networks and long short-term memoryarchitectures

    NUR TOLAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AHMET ÇINAR

  3. Derin öğrenme ile biyosinyal sınıflandırma ve hastalık tahmini

    Biosignal classification and disease prediction with deep learning

    MURAT ALAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MUSTAFA CANER AKÜNER

    DOÇ. DR. ALPER KEPEZ

  4. ECG arrythmia classification using Deep Neural Network

    ECG arrythmia classification using Deep Neural Network

    ZAKI UR REHMAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAntalya Bilim Üniversitesi

    Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    ASSIST. ASSOC. DR. SHAHRAM TAHERI

  5. EKG vuru imgelerinden kardiyak aritmilerin makine öğrenmesi ve derin öğrenme yöntemleri ile sınıflandırılması

    Classification of cardiac arrhythmias from ECG beat images by machine learning and deep learning methods

    MUHAMMED HALİL AKPINAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiFırat Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ABDULKADİR ŞENGÜR