Geri Dön

Aspect-based sentiment analysis in Turkish

Türkçe hedef-tabanlı duygu analizi

  1. Tez No: 672201
  2. Yazar: DENİZ ÖZKAN
  3. Danışmanlar: DR. ÖĞR. ÜYESİ ÇİĞDEM TURHAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Yazılım Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 78

Özet

Çoğu müşteri bir ürünü satın almayı düşündüklerinde, o ürünü daha önceden satın almış ve kullanmış diğer tüketicilerin inceleme ve yorumlarına güvenir. İnsanların fikir ve tercihlerini online platformlarda paylaşması yaygınlaştıkça, bu devasa bilgi kaynağı şirketlerin ürünleri hakkında geri bildirim alabilmeleri için çok değerli hale gelmiştir. Bu yüzden araştırmacılar, veri madenciliği ile duygulardan yararlı bilgileri ayrıştırmak gibi önemli bir amaç edinmişlerdir. Bu tezin hedefi, bir akıllı telefon hakkındaki Türkçe incelemelerin duygu sınıflarının belirlenmesi için doğal dil işleme kullanılarak; performans, fiyat ve kamera hedefleri bazında hedef-tabanlı duygu analizini gerçekleştirmektir. Kullanılan teknikler veri ön işlenmesi, açık ve kapalı özellik çıkarımı ve bunların ilgili hedeflere gruplanması, kelime ve kelime grupları seviyesinde sözlük tabanlı duygu analizidir. Sonuçlar, incelenen hedefler için en yüksek kesinlik, duyarlılık ve F1 ölçümü değerlerinin sırasıyla %93, %94 ve %93 olduğunu göstermiştir. Bu sonuçlar bizim çalışmamızın, diğer Türkçe hedef tabanlı duygu analizi çalışmalarıyla karşılaştırıldığında, kayda değer bir performansa sahip olduğunu ortaya çıkarıyor.

Özet (Çeviri)

Most customers rely on reviews and comments of other consumers that already purchased and used the products that they intend to purchase. As the sharing opinions and preferences of people on online platforms are widespread, these huge data sources are highly valuable to companies to gather feedback on their products. Therefore, researchers have an essential data mining goal to extract useful information from sentiments. In this thesis, the aim is to perform an aspect-based analysis to determine the sentiment polarity of the reviews for a smart phone using natural language processing techniques in Turkish for the performance, price and camera aspects. The techniques used are data preprocessing, explicit and implicit feature extraction as well as grouping corresponding aspects and lexicon-based sentiment analysis at word-level and word-group level. The evaluations show that the highest values of precision, recall and f1 measure for the aspects examined are found to be 93%, 94% and 93%, respectively. These results reveal that our study has remarkable performance compared to other Turkish aspect-based sentiment analysis studies.

Benzer Tezler

  1. Türkçe hedef tabanlı duygu analizi için alt görevlerin incelenmesi–hedef terim, hedef kategori ve duygu sınıfı belirleme

    Inspecting sub tasks of aspect based sentiment analysis in Turkish language–opinion target expression, aspect category and sentiment polarity detection

    FATİH SAMET ÇETİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. GÜLŞEN ERYİĞİT

  2. Developing a comprehensive framework for sentiment analysis in Turkish

    Türkçe için kapsamlı bir duygu analizi çatısı geliştirme

    CEM RIFKI AYDIN

    Doktora

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. TUNGA GÜNGÖR

    PROF. DR. SADIK FİKRET GÜRGEN

    DR. ÖĞR. ÜYESİ TEVFİK AYTEKİN

  3. Aspect-based sentiment analysis in Arabic for healthcare

    Sağlık alanı için Arapça metinlerden özellik-tabanlı duygu durum analizi

    HUNAIDA RAMADAN MOHAMMAD AWWAD

    Doktora

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ADİL ALPKOÇAK

  4. Derin öğrenme ile beklenti tabanlı duygu analizi

    Aspect based sentiment analysis with deep learning

    MELEK TURAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBursa Uludağ Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. METİN BİLGİN

    DR. ALİ DURAN

  5. Aspect-based sentiment analysis for turkish using deep learning model combinations

    Türkçe için derin öğrenme modelleri kullanarak özellik bazlı duygu analizi

    ALİ ERKAN

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. TUNGA GÜNGÖR