Geri Dön

Demiryolu yolcu taşıma talebinin yapay sinir ağları ile tahmini

Forecasting of railway passenger transport demand with artificial neural network

  1. Tez No: 672975
  2. Yazar: FATMA ÇAKIR
  3. Danışmanlar: DR. ÖĞR. ÜYESİ HÜMEYRA BOLAKAR TOSUN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Ulaşım, Transportation
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: Türkçe
  9. Üniversite: Aksaray Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 102

Özet

Demiryolu yolcu planlamaları ve gerekli noktalara yapılması düşünülen projelerin taşıma oranını belirlemek mali olarak uygun yöntemlerin seçilmesinde etkilidir. Yolcu talebi üzerinde etkili olan faktörlerin göz önünde bulundurularak tahminlerinin oluşturulması doğru tercihlerin ve kararların alınmasında önemli bir etkiye sahiptir. Bu çalışmada demiryolu yolcu taşıma talebinin belirlenmesi için etkili olan 9 bağımsız değişken ile demiryolu yolcu sayısı regresyon analizi ve yapay sinir ağları ile modellenmiştir. Modellerin performansını değerlendirebilmek için belirleme katsayısı ve hata kareleri ortalaması (MSE) dikkate alınmıştır. Korelasyon analizi ile önce değişkenler arasındaki ilişki incelenmiş ve bağımsız değişkenlerin bağımlı değişkeni açıklama oranı yeterli bulunmuştur. Regresyon analizi sonucunda nüfus ve demiryolu hat uzunluğunun bağımlı değişken üzerinde daha anlamlı olduğu belirlenmiştir. Yapay sinir ağları ile analizde ağın eğitilmesi için Levenberg-Marquardt algoritması kullanılarak uygun ağ yapısı tespit edilmiştir. Bağımsız değişkenlerin etkisi duyarlılık analizi ile incelenmiş ve en önemli değişkenin GSYH olduğu belirlenmiştir. İki model içinde belirleme katsayıları, modellerin açıklanması için yeterlidir ve MSE düşük değerlere sahiptir. Ancak yapay sinir ağlarının demiryolu yolcu sayısını belirlemede daha iyi performans gösterdiği anlaşılmıştır. Bunun üzerine gerçeğe yakın değerler oluşturduğu için YSA yolcu talebine ait tahminde daha iyi sonuçlar oluşturmaktadır.

Özet (Çeviri)

Railway passenger planning and determining the transportation rate of the projects that are planned to be made to the required points are effective in choosing financially apropriate methods. Considering the factors affecting the passenger demand, the creation of forecasts has an important effect on making the right choices an decisions. In the study, 9 independent variables that are effective for determining the demand for railway passengers by regression analysis and artificial neural networks. In order to evaluate the performance of the models, determination coefficient and mean square eror (MSE) were taken in to consideration. With correlation analysis, the relationship between variables was examined first and the explanation rate of the independent variables for the dependent variables was found to be sufficient. As a result of the regression analysis, it was determined that population and railway line length were more significiant on the dependent variable. The appropriate network structure was determined by using Levenberg-Marquardt algorithm to train the network in analysis with artificial neural network. The effect of independent variables was analyzed with sensitivity analysis and it was determined that the most important variable was GDP. The determination coefficient within the two models are sufficient to explain the models and MSE has low values. However, it has been understood that artificial neural networks perform better in determining the number of rail passengers. Therefore, ANN creates better results in the forecast of passerger demand as it creates realistic values.

Benzer Tezler

  1. Yapay sinir ağları yaklaşımı ile Türkiye'deki ulaştırma talebinin tahmini

    The estimation of transportation demand in Turkey with artificial neural networks approach

    TOLGA GÜRBÜZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2008

    İnşaat MühendisliğiKırıkkale Üniversitesi

    İnşaat Ana Bilim Dalı

    YRD. DOÇ. DR. ALİ PAYIDAR AKGÜNGÖR

  2. Bir metro hattında araç kapasitesinin artırılmasının orta gerilim ve cer sistemleri üzerine etkileri

    The effects of increasing vehicle capacity on medium voltage and traction systems in a metro line

    ZENNURE YENER

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    Raylı Sistemler Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖZCAN KALENDERLİ

  3. Ro-Ro gemi operasyonlarında optimizasyon modeli

    Optimization model in Ro-Ro vessel operations

    BERK MERCAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Denizcilikİstanbul Teknik Üniversitesi

    Denizcilik Çalışmaları Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BAYRAM BARIŞ KIZILSAÇ

    PROF. DR. DİLAY ÇELEBİ GONIDIS

  4. Kentsel ölçekte İstanbul raylı sistem gelişiminin 21. yüzyıl demiryolu rönesansı kapsamında değerlendirilmesi

    The evluation of the development in the urban rail system of Istanbul within the scope railway renaissanse of 21 st century

    ELİF ŞİMŞEK

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    UlaşımBahçeşehir Üniversitesi

    Kentsel Sistemler ve Ulaştırma Yönetimi Ana Bilim Dalı

    YRD. DOÇ. DR. PELİN ALPKÖKİN

  5. İstanbul Kentiçi kara toplu ulaşım hizmetlerinin başlaması ve gelişimi: 1850 - 1900

    Intrıduction and evolution of public trans portation sector in Istanbul: 1850 - 1900

    İBRAHİM MURAT BOZKURT

    Doktora

    Türkçe

    Türkçe

    2004

    EkonomiMarmara Üniversitesi

    İktisat Ana Bilim Dalı

    PROF. DR. AHMET TABAKOĞLU