Geri Dön

Detection of QRS complex and classification of electrocardiogram signals using computational intelligent algorithms

Hesaplamalı zeki algoritmalar kullanılarak QRS yapısının tespiti ve elektrokardiyogram sinyallerinin sınıflandırılması

  1. Tez No: 677012
  2. Yazar: MARWAH MUWAFAQ KADHIM AL-MOZANI
  3. Danışmanlar: DOÇ. DR. MUSTAFA BURAK TÜRKÖZ, DR. ÖĞR. ÜYESİ EFTAL ŞEHİRLİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Karabük Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 76

Özet

Elektrokardiyogram (EKG), kalbin elektriksel aktivitesini zamana karşı kaydeden bir biyoelektrik sinyaldir ve sıklıkla kalbin işlevlerini değerlendirmek için bir tanı aracı olarak kullanılmaktadır. Bu tezde, MATLAB yazılımında geliştirilen yeni ve yüksek doğrulukla çalışan bir algoritma ile EKG sinyalleri analiz edilmiş ve sınıflandırılmıştır. Analiz işlemleri, ön işleme, QRS yapısı tespiti, QRS yapısının özelliklerinin çıkarılması ve veri sınıflandırması olarak dört aşamadan oluşmaktadır. MIT-BIH tarafından araştırma yapmak için oluşturulan aritmi veri tabanından 823 adet EKG sinyali bu tezde kullanılmıştır. Veri seti, sağlıklı ve sağlıklı olmayan olarak iki sınıfa ayrılmıştır. QRS yapısı, K-ortalamalar kümeleme metodu kullanarak ve yerel ekstrem noktaları izleyerek tespit edilmiştir. QRS noktalarının ortalama duyarlılık, özgüllük ve saptama doğruluğu sırasıyla R tepe değeri için %97.04, %92.68 ve %95.81, Q tepe değeri için %91.30, %95.22 ve %94.02 ve S tepe değeri için% 91.65,% 95.05 ve %93.95 olarak hesaplanmıştır. Eğitim ve test setleri 5 çapraz doğrulama ile oluşturulmuştur. EKG sinyallerini sınıflandırmak için Karar Ağacı (DT), Rastgele Orman (RF) ve Lineer Diskriminant Analizi (LDA) algoritmaları kullanılmıştır. EKG sinyallerinin ortalama duyarlılığı, özgüllüğü ve doğruluğu sırasıyla DT için %89.9, %90.0 ve %90.0, RF için %96.0, %85.4 ve %90.5, LDA için %84.5, %74.8 ve %79.6 olarak hesaplanmıştır. En yüksek doğruluk ve Matthews Korelasyon Katsayısı (MCC) RF için elde edilirken, en düşük doğruluk ve MCC değeri LDA için elde edilmiştir.

Özet (Çeviri)

Electrocardiogram (ECG) is a bioelectric signal that records the electrical activity of the heart versus time, and it is frequently used as a diagnostic instrument for evaluating the functions of the heart. In this thesis, the ECG signals were analysed and classified using a new and highly accurate algorithm in MATLAB software. The analysis process comprises four stages: preprocessing, QRS complex detection, extraction of QRS features, and data classification. 823 ECG signals from an arrhythmia database created for research by the MIT-BIH used in this thesis. The dataset was split into two classes as healthy and non-healthy. The QRS complex was detected using the K-means clustering method and tracking local extrema points. The average sensitivity, specificity, and accuracy of detection of QRS points were respectively computed as 97.04%, 92.68%, and 95.81% for R peak value, 91.30%, 95.22%, and 94.02% for Q peak value and 91.65%, 95.05%, and 93.95% for S peak value. Training and test datasets have been created based on 5-fold cross-validation. Decision Tree (DT), Random Forest (RF), and Linear Discriminant Analysis (LDA) algorithms have been utilized to classify the ECG signals. The average sensitivity, specificity, and accuracy of classification of ECG signals are respectively computed as 89.9%, 90.0% and 90.0% for DT, 96.0%, 85.4% and 90.5% for RF, 84.5%, 74.8% and 79.6% for LDA. The highest accuracy and Matthews Correlation Coefficient (MCC) were recorded for RF, while the lowest value of accuracy and MCC were recorded for LDA.

Benzer Tezler

  1. Elektrokardiyogram vurularının GAL ağı yardımıyla sınıflandırılması

    Classification of electrocardiogram beats using GAL network

    SELİN METİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2002

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHMET KORÜREK

  2. Otomatik aritmi dedeksiyonu

    Başlık çevirisi yok

    GÜNNUR ALANYALI

  3. EKG işaretindeki aritmilerin yumuşak hesaplama algoritmaları kullanılarak sınıflandırılması

    Classification of arrhythmias in ecg signal using soft computing algorithms

    ÖNDER YAKUT

    Doktora

    Türkçe

    Türkçe

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EMİNE BOLAT

  4. KRT (kardiak resenkronizasyon terapisi) hastalarında farklı sol ventrikül pacing polaritelerinin ventriküler repolarizasyon paternleri üzerindeki etkisi ve klinik sonuçlarının karşılaştırılması

    Effect of different left ventricular pacing polarity on ventricular repolarization patterns in CRT (cardic resenchronization therapy)patients and comparison of clinical results

    MOHAMMED F.M. ABUSHAREKH

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2017

    KardiyolojiDokuz Eylül Üniversitesi

    Kardiyoloji Ana Bilim Dalı

    DOÇ. EMİN EVREN ÖZCAN

  5. Bulanık (Fuzzy) sınıflayıcılarla EKG şekil bozukluklarının belirlenmesi

    Detection of ECG shape changes by using fuzzy classifiers

    ZÜMRAY DOKUR

    Yüksek Lisans

    Türkçe

    Türkçe

    1995

    Biyomühendislikİstanbul Teknik Üniversitesi

    DOÇ.DR. MEHMET KORÜREK