Geri Dön

Computer aided diagnosis of breast tumor segmentation and classification on CT images using machine learning

Başlık çevirisi mevcut değil.

  1. Tez No: 697758
  2. Yazar: BARISH MOHAMMED IZADDIN IZADDIN
  3. Danışmanlar: DR. ÖĞR. ÜYESİ AYÇA KURNAZ TÜRKBEN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Altınbaş Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 54

Özet

Meme tümörü segmentasyonu, meme kanseri tedavisi ve takibinde çok önemli bir aşamadır. Radyologlar, bu zorlu süreci otomatikleştirerek meme kanseri analizinin yüksek iş yükünü en az a indirebilirler. Kaynak resimleri ön işleme tabi tuttuktan sonra, bu makale, Fuzzy c-Means ve Thresholding (FCMT) kombinasyonunu kullanarak tıbbi görüntülemede meme tümörlerini ve enfekte olmayan alanları (meme) doğru bir şekilde segmentlere ayırmak için bir sistem kurdu. Bu, segmentasyon için herhangi bir eğitim almadan her bir göğüs dilimi üzerinde çalışan bilgisayar destekli bir teşhis yöntemidir. 79 Bilgisayarlı Tomografi (BT) ve Manyetik Rezonans Görüntüleme (MRI) görüntüsünün bulunduğu bir veritabanında. Görüntü kalitesini artırmak için, FCMT'yi segmentasyon için uygulamadan önce kontrast artırma gibi ön işleme teknikleri kullandık. Tasarlanan yaklaşımın etkinliğini değerlendirmek için Ortalama Kare Hatası, zar katsayısı, Yapılandırılmış Benzerlik İndeksi, Tepe Sinyal-Gürültü Oranı, doğruluk ve hassasiyet hesaplandı. Aynı veri setinde, tekniğimizi farklı segmentasyon yöntemleriyle karşılaştırdık. 0.9568 zar katsayısı ve 0.9731 doğruluk ile yaklaşımımız diğerini önemli ölçüde aştı. Deneylerin bulgularına göre, önerilen yaklaşım, tıbbi resimlerde tümör ilerlemesini segmentlere ayırmada daha esnek ve doğrudur.

Özet (Çeviri)

Breast tumor segmentation is a crucial stage in breast cancer therapy and follow-up. Radiologists can minimize the high workload of breast cancer analysis by automating this difficult process. After pre-processing source pictures, this article established a system for accurately segmenting breast tumors and non-infected areas (breast) on medical imaging using combination of Fuzzy c-Means and Thresholding (FCMT). This is a computer-aided diagnostic method that works on each individual breast slice without any training for segmentation. On a database of 79 images of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). To increase the image quality, we used pre-processing techniques such as contrast augmentation before applying the FCMT for segmentation. To assess the effectiveness of the devised approach, the Mean Square Error, dice coefficient, Structured Similarity Index, Peak Signal-to-Noise Ratio, accuracy, and sensitivity were computed. On the same dataset, we compared our technique to different segmentation methods. With a dice coefficient of 0.9568 and an accuracy of 0.9731, our approach surpassed the other substantially. The suggested approach is more resilient and accurate in segmenting tumor progression on medical pictures, according to the findings of the experiments.

Benzer Tezler

  1. Superpixel assisted deep neural network for breast tumor segmentation in ultrasound images

    Süperpiksel destekli derin sinir ağı ile meme ultrason görüntülerinde tümör segmentasyonu

    NEFİSE UYSAL

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. ENDER METE EKŞİOĞLU

    ÖĞR. GÖR. MURAT GEZER

  2. Mamografi görüntülerinin değerlendirilmesinde örüntü tanıma temelli bir karar destek sistemi

    A decision support system based on pattern recognition for evaluating of mammographic images

    ESMA KARABULUT

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Elektronik ve Bilgisayar Sistemleri Eğitimi Ana Bilim Dalı

    DOÇ. DR. İBRAHİM TÜRKOĞLU

  3. Meme kanserinin tespiti ve sınıflandırılması için geliştirilmiş bilgisayar destekli teşhis sistemi

    An improved computer aided detection system for breast cancer detection and classification

    ABDULLAH FREIDOON FADHIL FADHIL

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Fen Bilimleri Ana Bilim Dalı

    DOÇ. DR. HUMAR KAHRAMANLI ÖRNEK

  4. Görüntü zenginleştirme ve hücresel ysa kullanarak meme kanseri teşhisi

    Diagnosis of breast cancer using image enhancement and cellular neural networks

    LEVENT CİVCİK

    Doktora

    Türkçe

    Türkçe

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YÜKSEL ÖZBAY

  5. Wavelet based tumor detection and its application on mammograms

    Mamogramlarda dalgacık tabanlı yöntemle tümör belirleme

    BURAK TÜYSÜZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2007

    Elektrik ve Elektronik MühendisliğiGaziantep Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜLAY TOHUMOĞLU