Stock price prediction using deep learning methods in high-frequency trading
Derin öğrenme metotlarını kullanarak yüksek frekanslı işlemlerde borsa fiyat tahmini
- Tez No: 701287
- Danışmanlar: DR. AYŞE NURDAN SARAN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: İngilizce
- Üniversite: Çankaya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 66
Özet
Borsa analizleri finansal, politik ve sosyal göstergeler göz önünde bulundurularak yapılırken, büyük veri ve derin öğrenme teknolojilerindeki önemli gelişmeler araştırmacı ve yatırımcıların dikkatini bilgisayar destekli analizlere yöneltmiştir. Bu çalışmada temel olarak kullanılan Bütünleşik Otoregresif Hareketli Ortalama (ARIMA) modelinin yanında Uzun Kısa-Dönem Hafızalı (LSTM) ağlar, Kapı Özyinelemeli Geçitler (GRU), Uzun Kısa-Dönem Hafızalı ağlarda Dikkat Mekanizması olmak üzere dört farklı model incelenmiştir. Borsa İstanbul verileriyle gerçekleştirilen çalışmada gün içi verileriyle tahminler gerçekleştirilmiĢtir. Yapılan test çalışmaları sonucunda Kapı Özyinelemeli Geçitler'in diğer modellere göre daha iyi sonuç verdiği görülmüştür.
Özet (Çeviri)
The stock market analysis examines and evaluates the stock market by considering the financial, political, and social indicators to make future predictions. Breakthrough results of advancements in big data and deep learning technologies attract the attention of researchers and traders to computer-assisted stock market analysis. There are several studies on stock market analysis using conventional machine learning and deep learning models. In this paper, we used Autoregressive Integrated Moving Average (ARIMA) as a base model and compared it with three different models of Recurrent Neural Networks: Long Short-Term Memory (LSTM) networks, Gated Recurrent Unit (GRU), LSTM with an attention layer model. We compare the results and performance of four different models on Borsa Istanbul data while making intraday predictions. Even though the LSTM results are very close to the GRU model, GRU slightly outperforms the others.
Benzer Tezler
- Deep wavelet neural network for spatio-temporal data fusion
Uzamsal-zamansal veri füzyonu içinderin dalgacık sinir ağları
AJLA KULAGLIC
Doktora
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BURAK BERK ÜSTÜNDAĞ
- Sign predictability of intraday price returns to formulate appropriate trading strategies with optimum set of equities
Optimum hisse senedi kümesi ile uygun işlem stratejileri oluşturmak için gün içi fiyat getirilerinin işaret tahmin edilebilirliği
ABDURRAHMAN KILIÇ
Doktora
İngilizce
2024
Ekonometriİstanbul Teknik Üniversitesiİktisat (İngilizce) Ana Bilim Dalı
PROF. DR. BÜLENT GÜLOĞLU
- Dalgacık dönüşümü ve derin öğrenme yöntemleri ile hisse senedi fiyat tahmini
Stock price prediction with wavelet transform and deep learning methods
ÇAĞRI ÇOBAN
Yüksek Lisans
Türkçe
2023
EkonometriAydın Adnan Menderes ÜniversitesiEkonometri Ana Bilim Dalı
DOÇ. DR. ELVAN HAYAT
- Derin öğrenme algoritmaları ile hisse senetlerinin fiyat hareketliliği öngörüsü
Prediction of stock price movements with deep learning algorithms
CEREN CAMKIRAN
Doktora
Türkçe
2023
İstatistikMarmara ÜniversitesiEkonometri Ana Bilim Dalı
PROF. DR. DİLEK ALTAŞ KARACA
- Makine öğrenmesi yöntemlerini kullanarak bir petrokimya firmasının hisse senedi fiyat tahmini
Stock price prediction of a petrochemical company using machine learning methods
ŞEVVAL TOPRAK
Yüksek Lisans
Türkçe
2023
Endüstri ve Endüstri MühendisliğiSakarya ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. GÜLTEKİN ÇAĞIL