A deep learnıng-based feature extractıon and classıfıcatıon for students actıvıtıes ın exam
Sınavda öğrenci etkinliklerinin etiketlenmesi için derin öğrenme temelli özniteliklerin çıkarılması ve sınıflandırılması
- Tez No: 703243
- Danışmanlar: PROF. DR. MURAT EKİNCİ
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: İngilizce
- Üniversite: Karadeniz Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Bilimleri Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 92
Özet
Video açıklaması ve insan etkinliği tanıma üzerine yapılan araştırmalar, görsel izleme konusundaki araştırma bulgularını önemli ölçüde iyileştirmektedir. Sınavda izleme etkinlikleri, öğrencilerin bir sınav odasında çeşitli etkinlikler gerçekleştirebilecekleri henüz çözülmemiş bir sorundur. Bu tür faaliyetler, otomatik bir gözetim sistemi aracılığıyla otomatik olarak izlenebilir. Derin özellik çıkarma için derin öğrenme yapıları olarak sıkma ağı ve VGG16 kullandık. Bu özellikler daha sonra tek bir özellik seti oluşturmak için seri olarak birleştirilir. Entropi ve karınca kolonisi optimizasyonu (ACO) tabanlı öznitelik seçimi yaklaşımları, hem filtre hem de sarmalayıcı tabanlı yaklaşımların niteliklerine sahip edinilmiş öznitelik alt kümelerine ayrı ayrı uygulanır. Ayrı olarak seçilen özellikler daha sonra güçlü bir özellik alt kümesi elde etmek için birleştirilir. Son olarak tahmin için SVM tabanlı sınıflandırıcılar uygulanır. Sınıflandırma algoritması, sınav etkinlikleri algılama veri kümesinden öğrenci etkinliklerini tam olarak anormal ve normal sınıflar olarak etiketler. Sonuçlar, sınavda aktivite tanıma için önerilen çerçevenin kabul edilebilir doğrulukla (%92) çok etkili olduğunu göstermektedir. Çerçeve, sınav sistemini iyileştirmek için sınavlardaki öğrenci etkinliğini analiz etmeye yardımcı olacaktır.
Özet (Çeviri)
Visual monitoring study findings have improved considerably as a result of research on video description and human activity detection. Exam cheating detection is a fundamental part of any level education program. This work focuses on students' activities labeling in the exam. The framework is developed for labeling students' activities into six different classes, back- watching, front-watching, side-watching, normal, showing gestures, and suspicious. A methodology for predicting cheating activities is proposed in this study. To extract features, feature descriptors such as local binary patterns and texture features are used. The entropy and ant colony optimization (ACO) based feature selection methods are utilized separately on the acquired feature subsets having qualities of both filter and wrapper-based approaches. The features are then combined to form a powerful features subset. Those selected features are trained on several different models. SVM-based and KNN classifiers are showed promising results on the datasets. The classification system accurately labels the student activities into abnormal and normal classifications using the exam activities detection dataset. The findings show that the proposed framework for activity recognition in exams is quite effective and accurate. 92% for SVM and 94% for KNN achieved on the dataset.
Benzer Tezler
- Use of transfer learning for automatic dietary monitoring through throat microphone recordings
Gırtlak mikrofonu kayıtları üzerinden öğrenim aktarımının otomatik diyet takibi için kullanımı
MEHMET ALİ TUĞTEKİN TURAN
Doktora
İngilizce
2019
Elektrik ve Elektronik MühendisliğiKoç ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. ENGİN ERZİN
- Bilgisayar ağı güvenliği için hibrit öznitelik azaltma ile makine öğrenmesine dayalı bir saldırı tespit sistemi tasarımı
Designing a machine learning based intrusion detection system with hybrid feature reduction for network security
MUHAMMED SAFA BIÇAKCI
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. SİNAN TOKLU
- Prediction of COVID 19 disease using chest X-ray images based on deep learning
Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini
ISMAEL ABDULLAH MOHAMMED AL-RAWE
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ADEM TEKEREK
- Görüntü işleme tabanlı bitki türleri ve hastalıkları tanıma
Image processing based plant species and diseases recognition
MUAMMER TÜRKOĞLU
Doktora
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. DAVUT HANBAY
- Convolutional autoencoder based heart arrhythmia detection system
Evrişimli otomatik kodlayıcı tabanlı aritmi tespit sistemi
ÖYKÜ ERAVCI
Yüksek Lisans
İngilizce
2024
Elektrik ve Elektronik MühendisliğiYaşar ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NALAN ÖZKURT