Geri Dön

Abstractive text summarization using deep learning

Soyutlayıcı metin özetlemesi derin öğrenme kullanarak

  1. Tez No: 704678
  2. Yazar: HANAN WAHHAB ABBAS ABBAS
  3. Danışmanlar: DR. ÖĞR. ÜYESİ BEYTULLAH YILDIZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 67

Özet

Özetleri otomatik olarak üretme yeteneği, çeşitli alanlarda verimliliğin yanı sıra bilginin yayılmasını ve elde tutulmasını iyileştirmeye yardımcı olabilir. Özetleme, soyutlamacı ve çıkarıcı olmak üzere temelde iki yaklaşım vardır. Ana fikirleri yakalamak için kaynak metnin kısa bir özetini oluşturma süreci olduğu için soyutlayıcı yaklaşım daha başarılı kabul edilir. Bu yaklaşımda, kaynak metinden oluşturulan özetler, orijinal metinde yer almayan yeni ifadeler ve cümleler içerebilir. Dikkate dayalı Tekrarlayan Sinir Ağları kodlayıcı-kod çözücü modellerinin kullanımı, özetleme ve makine çevirisi dahil olmak üzere dille ilgili çeşitli görevler için popüler olmuştur. Son zamanlarda, makine çevirisi alanında, Transformer modelinin Tekrarlayan Sinir Ağları tabanlı modelden üstün olduğu kanıtlanmıştır. Bu tezde, metin özetleme için geliştiril-miş bir kodlayıcı-kod çözücü Transformer modeli öneriyoruz. Temel model olarak, soyutlayıcı metin özetleme görevi için bir Tekrarlayan Sinir Ağları modelini olan Dikkatli Uzun Kısa Süreli Bellek kullandık. Bu çalışmanın değerlendirilmesi, ROUGE puanı kullanılarak otomatik olarak yapılmıştır. Deneysel sonuçlar, Transformer modelinin daha iyi bir özet ve daha yüksek bir ROUGE puanı sağladığını göstermektedir.

Özet (Çeviri)

The ability to produce summaries automatically helps to improve knowledge dissemination and retention, as well as efficiency in a variety of fields. There are basically two approaches to summarizing, abstractive and extractive. The abstractive approach is considered more successful as it is the process of creating a brief summary of the source text to capture the main ideas. In this approach, summaries created from the source text may contain new phrases and sentences not included in the original text. The use of attention-based Recurrent Neural Networks encoder-decoder models has been popular for a variety of language-related tasks, including summarization and machine translation. Recently, in the field of machine translation, the Transformer model has proven to be superior to the Recurrent Neural Networks -based model. In this thesis, we propose an improved encoder-decoder Transformer model for text summarization. As a baseline model, we used Long Short-Term Memory with attention, a Recurrent Neural Networks model, for the abstractive text summarization task. Evaluation of this study is performed automatically using the ROUGE score. Experimental results show that the Transformer model provides a better summary and a higher ROUGE score.

Benzer Tezler

  1. Derin öğrenme yöntemleri kullanılarak Türkçe haber metinlerinden haber başlığı üretilmesi

    Generating news headline from Turkish news using deep learning methods

    ENİSE KARAKOÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGebze Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BURCU YILMAZ

  2. Derin öğrenme yöntemleri ile Türkçe metinlerden anlamlı özet çıkarma

    Abstractive summarization from Turkish texts using deep learning methods

    MERVE NERGİZ AFATSUN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnkara Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HACER YALIM KELEŞ

  3. Analysis of word dependency relations and subword models in abstractive text summarization

    Soyutlamalı metin özetlemede kelime bağlılık ilişkileri ve alt sözcük modelleri analizi

    AHMET BEKA ÖZKAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. TUNGA GÜNGÖR

  4. Sağlık alanında yayınlanmış akademik çalışmaların doğal dil işleme ve derin öğrenme yöntemleri ile otomatik özetlenmesi

    Automatic summarization of academic studies published in the health field using natural language processing and deep learning methods

    ANIL KUŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMersin Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. ÇİĞDEM ACI

  5. Çıkarıcı Türkçe metin özetleme performansını iyileştirmek için yeni yöntemler

    New methods for improving the performance of extractive Turkish text summarization

    SALİH BAL

    Doktora

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik MühendisliğiEskişehir Osmangazi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ EFNAN ŞORA GÜNAL