Conventional and deep learning-based site amplification models forcentral and Eastern North America
Başlık çevirisi mevcut değil.
- Tez No: 714040
- Danışmanlar: PROF. YOUSSEF M. A. HASHASH
- Tez Türü: Doktora
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: University of Illinois at Urbana-Champaign
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 948
Özet
Özet yok.
Özet (Çeviri)
Central and Eastern North America (CENA) is known as a stable continental region that lacks region-specific site amplification functions due to a dearth of ground motion recordings for empirical constraints. Recently developed site amplification functions using a parametric study of large-scale one-dimensional (1D) site response analyses represent significant improvement in terms of seismic hazard applications. However, the limitations of these simulation-based studies persist due to (1) constraints on the variability in site profiles produced by parametric study and (2) the large error of estimations by conventional amplification functions caused by forcing a priori functional forms to fit the data. This research aims to develop robust response spectrum (RS) and Fourier amplitude spectrum (FAS) amplification models using an enhanced and enlarged amplification database. The first segment of this study is to perform over 3.6 million 1D linear, equivalent-linear and nonlinear site response analyses via high performance computing (HPC) resources. The simulations are conducted using prior parametric study design with improvements to remove the constraint on the variability of simulated site conditions at CENA along with the bias in the generic profiles. This study provides a brief description of each element of the parametric study tree and a detailed explanation of updates relative to prior work. The second part of this research is the development of RS and FAS site amplification models through a deep learning-based approach via Artificial Neural Network (ANN) and the application of prior conventional functions with enhancements to better capture the simulated amplification data. This study is the pioneer in the implementation of ANN for the modeling of site amplification and shows that the significant decrease in error of estimations by ANN-based models is obtained relative to conventional relationships along with more accurate representation of the features observed in the amplification dataset. A new conventional relationship, based only on the site natural period, which produces noticeably lower errors relative to those using time averaged shear wave velocity in the top 30 m of a site (VS30) is proposed for linear RS amplification, and all the linear RS functions are applied to FAS amplification to suggest an alternative set of models. The standard deviation for ANN-based and conventional models are proposed, and the improvements of ANN over conventional functions in capturing site-specific response are discussed
Benzer Tezler
- Deep learning-based building segmentation using high-resolution aerial images
Yüksek çözünürlüklü hava görüntüleri kullanarak derin öğrenme temelli bina bölütlemesi
BATUHAN SARITÜRK
Doktora
İngilizce
2022
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. DURSUN ZAFER ŞEKER
- Artificial intelligence based android assistant for colorimetric detection
Kolorimetrik tespit için yapay zeka tabanlı android asistanı
VAKKAS DOĞAN
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİzmir Katip Çelebi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. VOLKAN KILIÇ
DOÇ. DR. MUSTAFA ŞEN
- Deep neural network-based stealthy false data injection attack detection on der integrated systems
Dek entegre sistemlerinde derin sinir ağı tabanlı gizlenmiş yanlış veri enjeksiyon saldırısı tespiti
CAN GÜRKAN
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
PROF. DR. VEYSEL MURAT İSTEMİHAN GENÇ
- Automated analysis approach for the detection of high survivable ransomwares
Sinsi fidye yazılımlarının tespiti için otomatik analiz yaklaşımı
YAHYE ABUKAR AHMED AHMED
Doktora
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. BARIŞ KOÇER
DR. SHAMSUL HUDA
- Sinirileticilerin etkisinin matematiksel modellenmesi: Orta boy dikensi hücrelere dopaminin etkisi
Modelling the effect of neurotransmitters: Effect of dopamine on medium spiny neurons
RAHMİ ELİBOL
Yüksek Lisans
Türkçe
2013
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiDOÇ. DR. NESLİHAN SERAP ŞENGÖR