Geri Dön

Applying deep learning methodsto identify targets in synthetic apertureradar images

Başlık çevirisi mevcut değil.

  1. Tez No: 720788
  2. Yazar: SERKAN AKTAŞ
  3. Danışmanlar: DR. DAVİD A. GARREN, DR. JOHN D. ROTH
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2020
  8. Dil: İngilizce
  9. Üniversite: The Naval Postgraduate School
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 79

Özet

Özet yok.

Özet (Çeviri)

Synthetic aperture radar (SAR) provides high-resolution imagery and can operate in the day and at night and in every weather condition. SAR has been used for military reconnaissance and surveillance. Examining SAR images manually, however, is challenging even for a specialist, since it is difficult to find high-value targets in a wide area of SAR images. This is especially true when time is critical for operations. Thus, an efficient, reliable method to analyze SAR images automatically is needed. To solve this problem, deep learning (DL) methods are developed for automatic target recognition (ATR). A convolutional neural network (CNN) is a deep-learning algorithm made up of several processing layers for target recognition and classification. One of the challenges in developing and testing a CNN algorithm is to find relevant datasets. The dataset used in this thesis comes from the Moving and Stationary Target Acquisition and Recognition program (MSTAR). In this research, the SAR ATR concept and performance are analyzed using several CNN DL architectures. Specifically, this investigation examines the effects of a few variable parameters within CNN DL architectures to gain insight into optimal strategies for using these architectures. Using CNN structures with different numbers of layers, it was possible to classify SAR targets successfully and automatically with stateof-the-art accuracy. This method proved useful for classification and recognition of military targets.

Benzer Tezler

  1. Oyun karakteri üretimi için üretken modeller

    Generative models for game character generation

    FERDA GÜL AYDIN EMEKLİGİL

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Oyun ve Etkileşim Teknolojileri Ana Bilim Dalı

    DOÇ. DR. İLKAY ÖKSÜZ

  2. Cross-domain one-shot object detection by online fine-tuning

    Çevrimiçi ince-ayar ile tek-örnekli çapraz-alan nesne tespiti

    İREM BEYZA ONUR

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. BİLGE GÜNSEL

  3. Detection and classification of flaws from ultrasonic tomography images of composite materials based on deep learning

    Derin öğrenme tabanlı kompozit malzemelerin ultrasonik tomografi görüntülerinden kusurların tespiti ve sınıflandırılması

    ABDULKADİR GÜLŞEN

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAbdullah Gül Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. BURCU GÜNGÖR

    DR. BURAK KOLUKISA

  4. Yapay zeka ile meme kanseri teşhisi

    Breast cancer diagnosis with artificial intelligence

    İLKER ÇAKAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik MühendisliğiSakarya Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUHAMMED KÜRŞAD UÇAR

  5. Motor hareket hayali eeg verilerini deneklerden bağımsız ortak elektrotlar kullanarak sınıflama

    Classification of motor imagery eeg data using subject-independent common electrodes

    ALİ ÖZKAHRAMAN

    Doktora

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. TAMER ÖLMEZ