Applying deep learning methodsto identify targets in synthetic apertureradar images
Başlık çevirisi mevcut değil.
- Tez No: 720788
- Danışmanlar: DR. DAVİD A. GARREN, DR. JOHN D. ROTH
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: The Naval Postgraduate School
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 79
Özet
Özet yok.
Özet (Çeviri)
Synthetic aperture radar (SAR) provides high-resolution imagery and can operate in the day and at night and in every weather condition. SAR has been used for military reconnaissance and surveillance. Examining SAR images manually, however, is challenging even for a specialist, since it is difficult to find high-value targets in a wide area of SAR images. This is especially true when time is critical for operations. Thus, an efficient, reliable method to analyze SAR images automatically is needed. To solve this problem, deep learning (DL) methods are developed for automatic target recognition (ATR). A convolutional neural network (CNN) is a deep-learning algorithm made up of several processing layers for target recognition and classification. One of the challenges in developing and testing a CNN algorithm is to find relevant datasets. The dataset used in this thesis comes from the Moving and Stationary Target Acquisition and Recognition program (MSTAR). In this research, the SAR ATR concept and performance are analyzed using several CNN DL architectures. Specifically, this investigation examines the effects of a few variable parameters within CNN DL architectures to gain insight into optimal strategies for using these architectures. Using CNN structures with different numbers of layers, it was possible to classify SAR targets successfully and automatically with stateof-the-art accuracy. This method proved useful for classification and recognition of military targets.
Benzer Tezler
- Oyun karakteri üretimi için üretken modeller
Generative models for game character generation
FERDA GÜL AYDIN EMEKLİGİL
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiOyun ve Etkileşim Teknolojileri Ana Bilim Dalı
DOÇ. DR. İLKAY ÖKSÜZ
- Cross-domain one-shot object detection by online fine-tuning
Çevrimiçi ince-ayar ile tek-örnekli çapraz-alan nesne tespiti
İREM BEYZA ONUR
Yüksek Lisans
İngilizce
2024
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. BİLGE GÜNSEL
- Efficient deep learning approaches for signal and image analysis applications
Sinyal ve görüntü analizi uygulamaları için verimli derin öğrenme yaklaşımları
ONUR CAN KOYUN
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
PROF. DR. BEHÇET UĞUR TÖREYİN
- Design of a new biometric system based on hand geometry images using deep learning methods
El geometrisi görüntüleri ile derin öğrenme yöntemlerini kullanarak yeni biyometrik sistem tasarımı
HASAN NAJAT SHAKIR SHAKIR
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankırı Karatekin ÜniversitesiElektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SEDA ŞAHİN
- Sensor-based activity recognition and authentication using deep learning
Derin öğrenme yöntemleri ile sensör tabanlı sistemlerde aktivite ve kimlik tanıma
NİLAY TÜFEK
Yüksek Lisans
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ZEHRA ÇATALTEPE