Machine-vision-based classification of cashew nuts using colour features
Kaju fıstığının renk özellikleri kullanılarak makine görme ile sınıflandırılması
- Tez No: 733334
- Danışmanlar: PROF. DR. YEŞİM BENAL ÖZTEKİN
- Tez Türü: Yüksek Lisans
- Konular: Ziraat, Agriculture
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: Ondokuz Mayıs Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Tarım Makineleri ve Teknolojileri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 87
Özet
Kaju, Tanzanya'nın ülke ekonomisine dış gelir olarak katkı sağlayan başlıca ticari ürünlerden biridir. Kaju çekirdeklerinin işlenmesi, halen büyük ölçüde el emeği kullanılarak yerel olanaklarla yapılmaktadır. İdeal koşullarda iyi işlenirse kajuların beyaz renkte olması beklenir. Ancak, buhar odalarında uzun süre kavurma veya aşırı kurutma gibi çeşitli faktörler nedeniyle, bazı kaju çekirdekleri hafif kahverengi bir renge dönüşebilmektedir. Renk değiştirmiş bu kajulara kavrulmuş kaju denir. Besin kalitesi de dahil olmak üzere beyaz kaju çekirdekleri ile aynı özelliklere sahip olmasına rağmen, renk ve görünüm tüketicilerin kalite algısını etkilediği için bu kaju çekirdeklerinin ayrılması gerekmektedir. Tanzanya başta olmak üzere dünyanın pek çok yerinde kaju çekirdeklerinin ayırma ve sınıflandırma işlemi elle yapılmaktadır. Uluslararası ticarette, kaju sınıflandırması çok önemli olup ürün kalitesini artırmak için üretimin bu aşamasında daha etkili ve tutarlı yöntemlerin uygulanması gerektiği anlamına gelir. Bu çalışmanın amacı, kaju çekirdeklerinin beyaz veya kavrulmuş olarak sınıflandırılmasında renk özellikleri kullanılarak geleneksel Makine Öğrenmesi tekniklerinin kullanımının değerlendirilmesidir. Bu çalışmada, görüntülerden farklı renk özellikleri çıkarılmıştır. Çıkarılan özellikler, RGB ve HSV renk uzaylarında kanalların ortalamaları (μ), standart sapmaları (σ) ve çarpıklığını (γ) içerir. Python'da Boruta Kütüphanesi kullanılarak sarmal (wrapper) yöntemi uygulanarak bu sınıflandırma problemi için ilgili özellikler seçilmiş ve ilgili olmayanlar çıkarılmıştır. Bu çalışmada 5 model çalışılmış ve verimlilikleri analiz edilmiştir. Değerlendirme teknikleri Lojistik Regresyon, Karar Ağacı, Rastgele Orman, Destek Vektör Makinesi ve K-En Yakın Komşu (KNN) yöntemleridir. Karar Ağacı modeli, %98,4 ile en düşük doğruluğu vermiştir. 100 ağaçlı Rastgele Orman modelinde maksimum %99,8 doğruluk elde edilmiştir. Uygulamadaki basitliği ve yüksek doğruluğu nedeniyle Rastgele Orman bu çalışma için en iyi model olarak önerilmektedir. Bu çalışma, üretilen kaju fıstığının kalitesini artıracak kaju fıstığı işleme sistemlerinin geliştirilmesine katkı sağlayacaktır.
Özet (Çeviri)
Cashew is one of the major commercial commodities contributing to the national economy of Tanzania as foreign revenue. And yet still the processing of cashew kernels is run locally using manual labour for a big part. If processed well under ideal conditions, cashews are expected to be white in colour. But due to various factors like prolonged roasting in the steam chambers or over-drying, some cashew kernels tend to have a slight brown colour, and these are referred to as scorched cashews. Despite sharing the same characteristics with white cashew kernels, including nutritional quality, these cashew kernels are supposed to be graded differently. In many places around the world, particularly in Tanzania, the sorting and grading process of cashew kernels is performed by hand. In international trade, cashew grading is very important and this means more effective and consistent methods need to be applied in this stage of production in order to increase the quality of the products. The objective of this study was to evaluate the use of traditional Machine Learning techniques in the classification of cashew kernels as white or scorched by using colour features. In this experiment, various colour features were extracted from the images. The extracted features include the means (μ), standard deviations (σ), and skewness (γ) of the channels in RGB and HSV colour spaces. The relevant features for this classification problem were selected by applying the wrapper approach using the Boruta Library in Python, and the irrelevant ones were removed. 5 models are studied and their efficiencies analysed. The studied models are Logistic Regression, Decision Tree, Random Forest, Support Vector Machine and K-Nearest Neighbour. The Decision Tree model recorded the least accuracy of 98.4%. The maximum accuracy of 99.8% was obtained in the Random Forest model with 100 trees. Due to simplicity in application and high accuracy the Random Forest is recommended as the best model from this study. This study will contribute to the improvement of cashew nuts processing systems, which will improve the quality of the produced cashew nuts.
Benzer Tezler
- Classification of closed and open shell pistachio nuts by machine learning algorithms
Kapalı ve açık uçlu kabuklu antep fıstıklarının makine öğrenme algoritmaları ile sınıflandırılması
KHALED ADIL DAWOOD IDREES
Yüksek Lisans
İngilizce
2024
ZiraatOndokuz Mayıs ÜniversitesiTarım Makineleri ve Teknolojileri Mühendisliği Ana Bilim Dalı
PROF. DR. YEŞİM BENAL ÖZTEKİN
- Derin öğrenme metotları ile demiryolu arızalarının teşhisi ve sınıflandırılması
Diagnosis and classification of railway faults using deep learning methods
RIDVAN ÖZDEMİR
Doktora
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBilecik Şeyh Edebali ÜniversitesiElektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. MEHMET KOÇ
- Endüstriyel karo üretiminde kalite kontrol sürecinin yapay görme ve derin öğrenme teknikleri ile dijitalleştirilmesi
Digitalizing the quality control process in industrial tile production with machine vision and deep learning techniques
HÜSEYİN COŞKUN
Doktora
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSüleyman Demirel ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. TUNCAY YİĞİT
- Developing learning algorithms for enhancing industrial machine vision systems and improving task accuracy of robotic manipulators
Endüstriyel yapay görme sistemlerini iyileştirmek ve robotik manipülatörlerin görev doğruluğunu artırmak için öğrenme algoritmalarının geliştirilmesi
DIYAR KHALIS BILAL
Doktora
İngilizce
2021
Mekatronik MühendisliğiSabancı ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
PROF. DR. MUSTAFA ÜNEL
- Gıda sektöründeki sınıflandırma işlemlerinin derin öğrenmemimarileri ile gerçekleştirilmesi
Performing classification processes in the food industry withdeep learning architectures
ÖMER KARAGÖZ
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiNiğde Ömer Halisdemir ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HAKAN AKTAŞ