Patch based image denoising through locally linear embedding
Yerel doğrusal yerleştirme ile görüntülerde parça temelli gürültü giderme
- Tez No: 748651
- Danışmanlar: DOÇ. DR. MEHMET TÜRKAN
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: İzmir Ekonomi Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 84
Özet
Bu tezde, veri biliminde bir boyutsallık indirgeme yöntemi olan Yerel Olarak Doğrusal Yerleştirme (YDY) aracılığıyla görüntü gürültü giderme algoritmaları geliştirilmiştir. Gürültü giderme onlarca yıldır çalışılsa da henüz bir üst ve kesin sınır olmadığı için halen aktif bir araştırma alanıdır. YDY'yi kullanarak, görüntü gürültü gidermenin yeni bakış açılarının oluşturulması amaçlanmaktadır. Bu nedenle, geleneksel parça tabanlı yaklaşımlar ve temel sözlük öğrenme algoritmaları geliştirilmiştir. Parça tabanlı işlemi kullanmanın ana fikri, her bir parçanın en yakın komşu yamalarının YDY ağırlıkları ile gürültü giderilmiş parçaların seyrek temsillerini tahmin etmektir. Gürültünün etkisini azaltmak için parça boyutu, sözlük boyutu, boyutsallık indirgeme boyutu, en yakın komşu parça sayısı gibi çeşitli parametreler analiz edilmiştir. Dahası, alfa köklendirme, dönüşüm alanında eşikleme, hata tabanlı sözlük güncelleme ve özellik eşleme gibi yaklaşımlar denenmiştir. İstatistiksel sonuçlara ve görsel değerlendirmelere göre, gürültü etkisinin ortadan kaldırılması kadar görüntülerdeki detayların korunması da önemlidir. Deneysel sonuçlar, alfa köklendirmeye dayalı olarak geliştirilen algoritmanın çok umut verici sonuçlara sahip olduğunu göstermektedir. Ayrıca, önerilen yöntemin gürültü giderme performansı, literatürdeki iyi bilinen gürültü giderme algoritmaları ile rekabet edebilir.
Özet (Çeviri)
In this thesis, image denoising algorithms have been developed by means of Locally Linear Embedding (LLE) which is a dimensionality reduction method in data science. Although denoising has been studied for decades, it is still an active research area because there is not an upper and certain limit yet. By using LLE, new perspectives of image denoising are aimed to establish. Therefore, traditional patch-based approaches and basic dictionary learning algorithms have been developed. The main idea of using a patch-based process is to estimate sparse representations of denoised patches with LLE weights of nearest neighbor patches of each patch. In order to diminish the effect of the noise, various parameters have been analyzed such as patch size, dictionary size, dimension reduction size, number of the nearest neighbor patches, etc. Furthermore, different approaches have been tested such as alpha rooting, hard-thresholding in a transform domain, error based dictionary updating and feature mapping. According to the statistical results and visual assessments, preserving details in images is as much important as removing the noise effect. The experimental results demonstrate that the developed algorithm based on alpha rooting has very promising results. Moreover, the denoising performance of the proposed method can compete against the well-known denoising algorithms in literature.
Benzer Tezler
- Görüntü işlemede yama sıralama tabanlı yaklaşımlar
Patch ordering based approaches for image processing
ÖZDEN ÇOLAK
Doktora
Türkçe
2021
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ENDER METE EKŞİOĞLU
- Derin öğrenme tabanlı görüntü gürültü giderme için yoğun bağlantı kullanan yeni yaklaşımlar
Densely connected structures in deep learning based image denoising
VEDAT ACAR
Yüksek Lisans
Türkçe
2022
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ENDER METE EKŞİOĞLU
- Dinamik olmayan stokastik rezonans yöntemi kullanılarak su altı görüntülerinin iyileştirilmesi
Underwater image enhancement using non-dynamic stochastic resonance
RUSTAM SALIMOV
Doktora
Türkçe
2024
Fizik ve Fizik MühendisliğiSakarya ÜniversitesiFizik Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HACI AHMET YILDIRIM
- Yere nüfuz eden radarlarda öğrenme tabanlı yeni kargaşa giderme yöntemleri
New learning-based clutter removal methods in ground penetrating radar
EYYUP TEMLİOĞLU
Doktora
Türkçe
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. IŞIN ERER
- Liderlik etkinliğinin ölçümü için bir model önerisi
Başlık çevirisi yok
ZEYNEP DİDEM DEMİRÖZLÜ
Yüksek Lisans
Türkçe
1998
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. TUFAN VEHBİ KOÇ