Geri Dön

Machine learning based energy-efficient indoor positioning for mobile internet of things

Mobil nesnelerin interneti için makine öğrenimine dayalı enerji verimli iç mekanda konumlandırma

  1. Tez No: 752250
  2. Yazar: ALPER SAYLAM
  3. Danışmanlar: PROF. DR. VOLKAN RODOPLU, PROF. DR. CÜNEYT GÜZELİŞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: İngilizce
  9. Üniversite: Yaşar Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 55

Özet

Yapay Zekâ, mobil Nesnelerin İnterneti (IoT) cihazlarının konumlandırma doğruluğu ve enerji tüketimi ile ilgili zorlukların üstesinden gelmede iç mekan konumlandırma ve izleme sistemleri için umut verici bir çözümdür. Konumlandırma literatüründeki geçmiş çalışmaların çoğu, konumlandırma doğruluğunu artırmaya ve reaktif yaklaşımlar yoluyla iletim enerji tüketimi sorununu çözmeye odaklanmıştır. Bu geçmiş yaklaşımların aksine, yaklaşımımız bir mobil IoT cihazının gelecekteki yörüngesini tahmin etmek ve bu yörünge tahminlerine dayalı olarak konumlandırma aralığını belirlemektir. Yaklaşımımız, iç mekan konumlandırma ve izleme sistemlerinde bir mobil IoT cihazının iletim enerji tüketimini azaltmayı amaçlamaktadır. Bu tezde ilk olarak, enerji verimli iç mekan konumlandırma elde etmek için ``Karşılıklı Tahmin Hatasına Dayalı Dinamik Konumlandırma Aralığı (DPI-RFE)'' adlı bir algoritma geliştirilmiştir. Mevcut iç mekan konumlandırma algoritmalarının aksine, DPI-RFE, karşılıklı anlık tahmin hatasına dayalı olarak konumlandırma aralığını uyarlar, böylece iletim enerji tüketimini tahmin hatasına karşı dinamik olarak değiştirir. Toplam iletim enerji tüketimi ve ortalama tahmin hatası açısından DPI-RFE'nin performansı Sabit Konumlandırma Aralığı (CPI) ve Yer Değiştirme tabanlı Konumlandırma Aralığı (PID) ile karşılaştırılmaktadır. Sonuçlarımız, rekabetçi bir ortalama tahmin hatası performansı elde ederken, DPI-RFE'nin iletim enerji tüketimi açısından bu kıyaslama algoritmalarının her ikisinden de önemli ölçüde daha iyi performansa sahip olduğunu göstermektedir. İkincisi, mobil IoT cihazları için enerji verimliliğini daha da artırmak için ``Makine Öğrenimi Etkinleştirilmiş Uyku Süresi Tahmini (MLE-STE)' adlı yeni bir mimari geliştirilmiştir. MLE-STE mimarimiz, mobil cihazın yörüngesini tahmin eder ve hedef maksimum tahmin hatasına tabi olan tahmin pozisyonlarına göre mobil cihazın izin verilen maksimum uyku süresini tahmin eder. MLE-STE mimarimizin performansı, Yer Değiştirmeye Dayalı Konumlandırma Aralığı (PID) ve Karşılıklı Tahmin Hatasına Dayalı Dinamik Konumlandırma Aralığı (DPI-RFE) algoritmalarının performansıyla, iletim enerji tüketimi ve tahmin hatası açısından karşılaştırılmaktadır. Sonuçlarımız, MLE-STE mimarisinin hem PID hem de DPI-RFE'den daha iyi performansa verdiğini göstermektedir. Bu tez, mobil IoT cihazları için yüksek enerji verimliliği sağlayan makine öğrenimi tabanlı iç mekan konumlandırma ve izleme sistemlerinin geliştirilmesine giden yolu açmaktadır.

Özet (Çeviri)

Artificial Intelligence is a promising solution to indoor positioning and tracking systems in overcoming the challenges of positioning accuracy and energy consumption of mobile Internet of Things (IoT) devices. The majority of the past works in the positioning literature have focused on enhancing the positioning accuracy and solving the problem of transmit energy consumption via reactive approaches. In contrast to these past approaches, our approach is to forecast the future trajectory of a mobile IoT device and determine the positioning interval based on these trajectory forecasts. Our approach aims to reduce the transmit energy consumption of a mobile IoT device in indoor positioning and tracking systems. In this thesis, first, we develop an algorithm called ``Dynamic Positioning Interval based on Reciprocal Forecasting Error (DPI-RFE)'' in order to achieve energy-efficient indoor positioning. In contrast with existing indoor positioning algorithms, DPI-RFE adapts the positioning interval based on the reciprocal instantaneous forecasting error, thereby dynamically trading off transmit energy consumption against forecasting error. We compare the performance of DPI-RFE with respect to total transmit energy consumption and average forecasting error against those of the Constant Positioning Interval (CPI) and Positioning Interval based on Displacement (PID) algorithms. Our results show that DPI-RFE significantly outperforms both of these benchmark algorithms with respect to transmit energy consumption while achieving a competitive average forecasting error performance. Second, in order to improve energy efficiency further for mobile IoT devices, we develop a novel architecture called ``Machine Learning Enabled Sleep Time Estimation (MLE-STE)''. Our MLE-STE architecture forecasts the trajectory of the mobile device and estimates the maximum allowable sleep time of the mobile device with respect to forecast positions subject to a target maximum forecasting error. We compare the performance of our MLE-STE architecture against those of the Positioning Interval based on Displacement (PID) and our Dynamic Positioning Interval Based on Reciprocal Forecasting Error (DPI-RFE) algorithms with respect to transmit energy consumption and forecasting error. Our results show that the MLE-STE architecture outperforms both PID and DPI-RFE. This thesis paves the way to the development of machine-learning-based indoor positioning and tracking systems that achieve high energy efficiency for mobile IoT devices.

Benzer Tezler

  1. Makine öğrenmesi tabanlı iç ortam sıcaklık kontrolü için bir simülatör yazılımı tasarımı

    Design of a simulator software for machine learning-based indoor temperature control

    AYDIN BOSTANCI

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    PROF. DR. DEVRİM AKGÜN

  2. Prediction of the heating season indoor thermal data based on short-term measurement

    Kısa süreli iç ortam ölçüm verisine dayalı ısıtma sezonu tahmini

    SAMI SHAMS ALDIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Enerjiİstanbul Teknik Üniversitesi

    Enerji Bilim ve Teknoloji Ana Bilim Dalı

    DOÇ. DR. HATİCE SÖZER

  3. Makine öğrenmesi yöntemleriyle otonom bina yönetim sisteminde enerji tüketiminin tahmin edilmesi

    Predicting energy consumption in autonomous building management system with machine learning methods

    MOLDIR SABYRZHAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Bilimleri Ana Bilim Dalı

    PROF. DR. MAHİR DURSUN

  4. Statistical feature learning and signal generation for time-series sensor signals

    Zaman serisi sensör işaretleri için öznitelik öğrenimi ve işaret üretimi

    ERKAN KARAKUŞ

    Doktora

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HATİCE KÖSE

  5. Machine learning-based energy consumption forecastingfor stores in a shopping center - A case study

    Alışveriş merkezindeki dükkânların enerji tüketimininmakine öğrenmesiyle tahmini - Vaka çalışması

    NADIA AHBAB

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Enerjiİstanbul Teknik Üniversitesi

    Enerji Bilim ve Teknoloji Ana Bilim Dalı

    ÖĞR. GÖR. MUSTAFA BERKER YURTSEVEN