Geri Dön

Covid-19 verileri için Bayes ağları ile makine öğrenmesi

Machine learning with bayesian networks for Covid-19 data

  1. Tez No: 758891
  2. Yazar: HÜSEYİN CAN YILMAZ
  3. Danışmanlar: PROF. DR. SERPİL AKTAŞ ALTUNAY
  4. Tez Türü: Yüksek Lisans
  5. Konular: Biyoistatistik, Biostatistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: Hacettepe Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İstatistik Ana Bilim Dalı
  12. Bilim Dalı: İstatistik Bilim Dalı
  13. Sayfa Sayısı: 57

Özet

Covid-19 pandemisi, 17 Kasım 2019 tarihinde Çin'in Vuhan Eyaleti'nde ilk defa görülmüştür. Küresel pandemi ilk başta Vuhan'daki deniz mahsülleri ve hayvan satışı yapılan yerlerde görülmüştür. Sonra insanlar arasında da yayılışını devam ettirerek Vuhan başta olmak üzere Çin'in diğer eyaletindeki bölgelere ve diğer dünya ülkelerine yayılmıştır. 11 Mayıs 2022 tarihi itibariyle dünyada 519.682.000 vaka meydana gelmiştir ve 6.266.278 hasta ölmüştür. Ülkemizde ve dünya genelinde Covid-19 pandemisinin etkilerini gösteren birçok araştırma ve analiz çalışmaları yapılmıştır. Bu tez çalışmasında dünya genelinde 104 ülkeden oluşan 215.968 adet dünya çapında meydana gelen vaka analiz edilmiştir ve Bayes Ağları (Bayesian Networks) ile makine öğrenimi tekniği kullanılarak hastalar sınıflandırılmaya çalışılmıştır. Bu çalışmada, dokuz adet değişkenle Covid-19 virüsüne yakalanan hastaların hayatta kalıp kalmayacağını araştırılmıştır. Böylelikle hangi hastaya öncelik verip tedavi edilmesi gerektiği veya gözlem altında tutulması gerektiği belirlenecektir. Sonuç olarak bu çalışmayla dünya genelindeki Covid-19 pandemisinden kaynaklı ölüm oranlarının düşürülmesi hedeflenmektedir.

Özet (Çeviri)

The Covid-19 pandemic emerged on November 17, 2019, in Wuhan Province of China. The outbreak was initially detected in those found in the seafood and animal market in this region. Later, it spread from person to person and spread to other cities in Hubei province, especially in Wuhan, other provinces of China, and other world countries. Until May 11, 2022, 519.682.000 cases occurred globally and 6.266.278 patients died from Covid-19. Many research and analysis studies have been conducted in our country and around the world showing the effects of the Covid-19 pandemic. In this thesis study, 215,968 worldwide cases from 104 countries around the world were analyzed and the patients were tried to be classified using Bayesian Networks and machine learning techniques. In this study, it was investigated whether the patients who caught the Covid-19 virus would survive using nine variables. In this way, it will be determined which patient should be given priority and treated or kept under observation. Thus, this study aims to reduce the death rates due to the Covid-19 pandemic worldwide.

Benzer Tezler

  1. Makine öğrenmesi yöntemleri ile kovid-19 transkriptomik biyobelirteçlerin belirlenmesi

    Determination of kovid-19 transcriptomic biomarkers using machine learning methods

    HATİCE YILDIZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYalova Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT GÖK

  2. Anti-koronavirüs peptitlerinin protein kodlama yöntemleri ile tespiti

    Determination of anti-coronavirus peptides by protein coding methods

    HASİBE CANDAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYalova Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT GÖK

  3. Öksürük ses kayıtları kullanılarak COVID-19 tahmini

    Predicting COVID-19 using cough audio recordings

    NURSEN KELEŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtatürk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ METE YAĞANOĞLU

  4. SARS-CoV-2 proteini ile insan proteini arasindaki etkileşimlerin makine öğrenmesi yöntemleri ile tahmini

    Prediction of interactions between SARS-CoV-2 protein and human protein using machine learning methods

    FİRDES GÜL KORKUT

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYalova Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT GÖK

  5. Derin öğrenme ve büyük veri analitiği yöntemleriKullanarak Covid-19 yayılımının ileriye dönük tahmini

    Forecasting the spread of covid-19 using deep learning and big data analytics methods

    CYLAS KIGANDA

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Bilimleri Ana Bilim Dalı

    PROF. DR. MUHAMMET ALİ AKCAYOL