Implementing artificial neural network based gap acceptance models in the simulation model of a traffic circle in SUMO
SUMO'da trafik çemberinin simülasyon modelinde artificial neural network tabanlı boşluk kabul modellerinin uygulanması
- Tez No: 760676
- Danışmanlar: Assoc. Prof. Dr. BEKİR OĞUZ BARTIN
- Tez Türü: Yüksek Lisans
- Konular: Ulaşım, İnşaat Mühendisliği, Transportation, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: İngilizce
- Üniversite: Özyeğin Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 67
Özet
The impact of various operational and design alternatives at roundabouts and traffic circles can be evaluated using microscopic simulation tools. Most microscopic simulation softwares utilize default underlying models for this purpose, which may not be generalized to specific facilities. Since the effectiveness of traffic operations at traffic circles and roundabouts is highly affected by the gap rejection–acceptance behavior of drivers, it is essential to accurately model driver's gap acceptance behavior using location-specific data. The objective of this paper was to evaluate the feasibility of implementing an Artificial Neural Network (ANN)-based gap acceptance model in SUMO, using its application programming interface. A traffic circle in New Jersey was chosen as a case study. Separate ANN models for one stop-controlled and two yield-controlled intersections were trained based on the collected ground truth data. The output of the ANN-based model was then compared with the SUMO model, calibrated by modifying the default gap acceptance parameters to match the field data. Based on the analyses results it was concluded that the advantage of the ANN-based model lies not only in the accuracy of the selected output variables in comparison to the observed field values, but also in the realistic vehicle crossings at the uncontrolled intersections in the simulation model.
Özet (Çeviri)
Dönel kavşaklarda ve trafik dairelerinde çeşitli operasyonel ve tasarım alternatiflerinin etkisi, mikroskobik simülasyon yazılımları kullanılarak değerlendirilebilir. Çoğu mikroskobik simülasyon yazılımı, bu amaç için belirli tesislere genelleştirilemeyecek varsayılan temel modelleri kullanır. Trafik daireleri ve dönel kavşaklardaki trafik operasyonlarının etkinliği, sürücülerin boşluk reddetme-kabul davranışından büyük ölçüde etkilendiğinden, konuma özgü verileri kullanarak sürücünün boşluk kabul davranışını doğru bir şekilde modellemek esastır. Bu makalenin amacı, uygulama programlama arayüzünü kullanarak SUMO'da Artificial Neural Network (ANN)-tabanlı bir boşluk kabul modeli uygulamanın fizibilitesini değerlendirmektir. Örnek olay olarak New Jersey'deki bir trafik çemberi seçilmiştir. Bir durak kontrollü ve iki verim kontrollü kavşak için ayrı ANN modelleri, toplanan yer gerçeği verilerine dayalı olarak eğitilmiştir. ANN tabanlı modelin çıktısı daha sonra SUMO modeliyle karşılaştırıldı ve varsayılan boşluk kabul parametreleri saha verileriyle eşleşecek şekilde değiştirilerek kalibre edildi. Analiz sonuçlarına dayanarak, ANN-tabanlı modelin avantajı, seçilen çıktı değişkenlerinin gözlemlenen alan değerlerine göre doğruluğunda ve ayrıca simülasyon modelinde kontrolsüz kavşaklarda gerçekçi araç geçişlerinde yattığı sonucuna varılmıştır.
Benzer Tezler
- Elektrikli hava aracı itki sistemleri için yapay zeka destekli akıllı algılama
Artificial intelligence based smart sensing for electric aircraft propulsion
BAHADIR CİNOĞLU
Doktora
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Teknik ÜniversitesiHavacılık Elektrik ve Elektroniği Ana Bilim Dalı
PROF. DR. TAHİR HİKMET KARAKOÇ
PROF. DR. UMUT DURAK
- Deep convolutional neural network based broken magnet detection of PMSM using finite element analysis
Sonlu elemanlar analizi kullanarak PMSM'nin derin dönüşümlü sinir ağı tabanlı kırık mıknatıs tespiti
AMIN GHAFOURI MATANAGH
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. SALİH BARIŞ ÖZTÜRK
- Akusto optik filtreli EDFA modülünün yapay sinir ağı ile kazanç düzleme kontrolü
Neural network based dynamic gain control of erbium doped fiber amplifiers
HÜSEYİN TİRTOM
Yüksek Lisans
Türkçe
2005
Elektrik ve Elektronik MühendisliğiEge ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ.DR. GÖKALP KAHRAMAN
- Strategic decision making in construction companies: An artificial neural network based decision support system for international market selection
İnşaat şirketlerinde stratejik karar verme mekanizmaları: Yurtdışı pazar seçiminde kullanılması önerilen ve yapay sinir ağları ile oluşturulan bir karar destek sistemi
İREM DİKMEN
Doktora
İngilizce
2001
İnşaat MühendisliğiOrta Doğu Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. M. TALAT BİRGÖNÜL
- Bilgisayar simülasyonu ile yapay zeka içeren algoritmik çözümlerin irdelenmesi
An Investigation into the algorithmic solutions by computer simulations including artificial intelligence
FÜSUN ATAMAN
Yüksek Lisans
Türkçe
2000
Elektrik ve Elektronik MühendisliğiGazi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. SELMA YÜNCÜ