Geri Dön

Nonlinear control design and stability analysis ofpower inverters in modern smart grids

Başlık çevirisi mevcut değil.

  1. Tez No: 761019
  2. Yazar: SEYFULLAH DEDEOGLU
  3. Danışmanlar: DR. GEORGE C. KONSTANTOPOULOS
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Nonlinear control, three-phase inverters, droop control, current limitation, stability analysis, virtual synchronous control, DC-link voltage control, grid faults, microgrids, circulating current, parallel inverter operation, grid-connected state, standalone state
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: The University of Sheffield
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 172

Özet

Özet yok.

Özet (Çeviri)

Due to environmental concerns, the rise of renewable energy units is causing a paradigm change in the modern electric power system since bulky synchronous generators are being replaced by power electronic converters whose control algorithms are flexible but have low or no inertia. The inertia is a key concept for the power systems as it ensures frequency stability by balancing the generated and consumed power in case of system disturbances. To deal with the inertia problem in power electronic converters, research efforts have led to the formation of various control algorithms, such as droop control, virtual synchronous control, synchronverter, and virtual oscillator control. In addition, since the number of active players involved in power production significantly increases, system stability is another critical issue that should be considered for seamless power converter-based operations. Furthermore, power electronic converters are composed of semiconductor switches, which can be damaged if sudden changes, such as grid voltage sags and short-circuits, occur in the system. Therefore, advanced controllers are required to protect the power converter devices by limiting the key system states, i.e., currents and voltages, without increasing the total system cost. In this thesis, the main aims are to propose novel nonlinear control algorithms that can ensure reliable operation of grid-connected inverter-fed units and microgrids via system state limitation without additional protection schemes for both single and parallel-connected three-phase inverters, investigate the system stability, and provide the analytic stability conditions that can guide the prospective designers. The proposed controllers are tested both in grid-connected and stand-alone modes for power inverter and microgrid systems considering several system faults including voltage sags and short-circuits. Initially, for the three-phase grid-connected inverters, inverter current limitation is achieved by embedding droop control dynamics into both nonlinear bounded integral controller (BIC) and state-limiting PI (sl-PI) controllers, the closed-loop system stability is examined, and the analytic stability conditions are provided. Furthermore, an improved virtual synchronous control structure is proposed by coupling DC-link voltage and AC frequency dynamics and applied to three-phase iii grid-connected inverters. Finally, a nonlinear droop controller that can guarantee the current-limiting property and avoid the undesired circulating current issue in AC microgrids with parallel three-phase inverters is designed. The performances of proposed controllers are verified via simulation, experimental and hardware-in-the-loop studies considering both grid-connected and stand-alone modes. In all of the above cases, the proposed controllers are directly compared with the state-of-the-art control methods under both normal and abnormal (faulty) grid conditions to highlight the advantages of the proposed control frameworks in practice, in addition to the rigorous stability analysis.

Benzer Tezler

  1. Çok makineli güç sisteminde açısal kararlılık analizi ve kontrolör parametre optimizasyonu

    Angular stability analysis and controller parameter optimization in multi-machine power system

    SERDAR EKİNCİ

    Doktora

    Türkçe

    Türkçe

    2015

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞEN DEMİRÖREN

  2. Güç sistemlerinde hizmet engelleme saldırıları ve giriş zaman gecikmelerine karşı hibrit kontrol stratejileri ile kararlılık ve dayanıklılık artırma

    Enhancing stability and resilience with hybrid control strategies against denial-of-service attacks and input delays in power systems

    UMUTCAN YİĞİT

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiMersin Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AHMET NACİ METE

    DR. ÖĞR. ÜYESİ SERHAT OBUZ

  3. Katsayı diyagram yöntemi ve uygulamaları

    The coefficient diagram method and its applications

    SELMAN FATİH AVŞAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2012

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHMET TURAN SÖYLEMEZ

  4. S bant radar uygulamaları için iki katlı 50 watt GaN HEMT f sınıfı güç kuvvetlendiricisi tasarımı

    Design of two stage 50 watt GaN HEMT class f power amplifier for s band radar applications

    SÜHEYB ABDURRAHMAN BOZDEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. METİN YAZGI

    DOÇ. DR. OĞUZHAN KIZILBEY

  5. Flight control system design of F-16 aircraft using robust eigenstructure assignment

    F-16 uçağı için dayanıklı özdeğer-özvektör atama tekniği ile uçuş konrol sistemi tasarımı

    ONUR ALBOSTAN

    Doktora

    İngilizce

    İngilizce

    2018

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. METİN GÖKAŞAN