Geri Dön

Development of electrospun multifunctional fibrous structures for icephobic and superhydrophobic applications

Buzfobik ve süperhidrofobik uygulamalar için elektroeğrilmiş çokişlevli lifli yapıların geliştirilmesi

  1. Tez No: 761105
  2. Yazar: MAHMUT TAS
  3. Danışmanlar: PROF. DR. XİANGHUİ HOU
  4. Tez Türü: Doktora
  5. Konular: Metalurji Mühendisliği, Metallurgical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: İngilizce
  9. Üniversite: The University of Nottingham
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Malzeme Bilimi ve Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Malzeme Bilimi ve Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 215

Özet

Özet yok.

Özet (Çeviri)

Icephobicity is defined as the ability of a solid surface to prevent ice accumulation or the potential of repelling ice from the surface. On the other hand, superhydrophobicity is a physical property of a surface, which means lacking affinity for water, and tending to repel water. Although these two surface properties have critical application areas such as energy harvesting systems, transportation, corrosion resistance coatings and friction reduction, fabricating superhydrophobic and icephobic surfaces is still a big challenge due to the lack of scalable, straightforward, and cost-effective production methods. Moreover, integrating additional functions, including electromagnetic interference (EMI) shielding and electrical conductivity to these materials to achieve multifunctionality, enables many modern applications, such as EMI shielding protective devices and power transmission systems. Electrospinning is one of the most commonly used methods to produce nano-sized polymeric fibrous membranes or coatings. Unique properties such as high surfaceto-volume ratio, high porosity interconnected open pore structures, and adjustable pore sizes make electrospun membranes irreplaceable. However, the potential of using the electrospinning method to produce superhydrophobic and icephobic surfaces is still not investigated in depth. Although there are some studies on the superhydrophobic application of electrospun membranes, considerable challenges remain, such as expensive chemicals, low reproducibility, complex production techniques, and the necessity of a post-treatment or functionalization step. Moreover, electrospun membranes may be a good candidate for icephobic applications based on the Cassie-Baxter icing state or specific material design such as slippery liquid-infused porous structures (SLIPS). In the Cassie-Baxter icing state, water does not penetrate the details of roughness but sits on the air pockets, which provides a low icing area between the ice and the surface, resulting in a lowered work of adhesion of ice. However, no report has been found that explores the potential of the electrospinning method for icephobic applications. In this thesis, the potential of using electrospinning method to fabricate superhydrophobic and icephobic surfaces has been explored. Polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP), which is a low surface energy polymer, was used to explore the potential of using electrospinning method to design a one-step production method of superhydrophobic surfaces without a post-treatment or nanofiller by only changing the production parameters of electrospinning. The proposed method has significant benefits such as shortened processes, less material use, and low-cost production compared to multistep methods reported in the literature. Moreover, the roles of each parameter on surface topography, contact angle, and fibre formation have been discussed. Superhydrophobicity has been achieved thanks to the synergetic effect of the roughness and the low surface tension of the polymer. Additionally, the lowest contact angle hystereses were less than 10°, which is one of the requirements of superhydrophobicity and indicates good mobility of the water droplet on the surface, thanks to the Cassie-Baxter state exhibited. Since the electrospun PVDF-co-HFP nanofibre membranes fabricated had a good porosity and oleophilic nature, their potential as the porous part of the SLIPS has been explored. The designed structure exhibited exceptional icephobic properties (lower than 1 kPa, one of the lowest ice adhesion strengths reported in the literature) with smooth surface topography and decreased water contact angle. As the water droplet sat completely on a thin film of lubricating liquid thanks to encapsulated regime achieved, ice adhesion strength was reduced significantly. It was also found that these SLIPS had outstanding flexibility and transparency (>90%), resulting from refractive index matching of polymer used and lubricants. Moreover, a novel multifunctional electrospun membrane was designed and produced for outdoor EMI shielding applications, using recycled polyethylene terephthalate (r-PET) instead of virgin polymers to widen the horizon of using recycled materials. A two-step production process has been applied, which consisted of (i) fabrication of r-PET/magnetite electrospun membranes and (ii) surface modification by fluorinated silane functionalized SiO2 nanoparticles (FSFS). The coaxial waveguide method, a common method to investigate EMI shielding efficiency, was used to investigate EMI shielding properties, and it was found that 20 wt.% magnetite-loaded nanofibre membrane had an EMI shielding efficiency of 22 dB, which was equivalent to above 99% shielding efficiency between 400 MHz and 6 GHz. After FSFS treatment, the nanofibre membrane exhibited Cassie-Baxter state resulted in less than 5° of contact angle hysteresis and approximately 50 kPa ice adhesion strength, thanks to lower surface energy and hierarchical topography, which was beneficial for both icephobic and superhydrophobic performance.

Benzer Tezler

  1. Development of multifunctional nanofibrous materials via electrospinning

    Elektroeğirme yöntemi ile çok fonksiyonlu nanoliflerden oluşan malzemelerin geliştirilmesi

    FATMA KAYACI

    Doktora

    İngilizce

    İngilizce

    2014

    Metalurji Mühendisliğiİhsan Doğramacı Bilkent Üniversitesi

    Malzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı

    DOÇ. DR. TAMER UYAR

  2. Developing peptide modified novel bioactive materials for bone tissue engineering applications

    Kemik doku mühendisliği uygulamaları için peptit ile modifiye edilmiş özgün biyoaktif malzemelerin geliştirilmesi

    GÜNNUR PULAT

    Doktora

    İngilizce

    İngilizce

    2021

    Mühendislik Bilimleriİzmir Katip Çelebi Üniversitesi

    Biyomedikal Teknolojiler Ana Bilim Dalı

    DOÇ. DR. OZAN KARAMAN

  3. Development of nanoscale systems for therapeutic applications

    Tedavi uygulamaları için nano ölçekli sistemlerin geliştirilmesi

    JALAL KARIMZADEHKHOEI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilim ve TeknolojiSabancı Üniversitesi

    Malzeme Bilimi ve Nanomühendislik Ana Bilim Dalı

    Prof. Dr. GÖZDE İNCE

  4. Basınca duyarlı MWCNTS dekoratif elektrospun MWCNTS/TPU nanolif yapıların sentez ve piezorizistif karakterizasyonu

    Synthesis and piezoresistive characterization of pressure‐ sensitive MWCNTS decorated electrospun MWCNTS/TPU nanofibrous structures

    İHSAN FATİH ERTAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Tekstil ve Tekstil MühendisliğiMarmara Üniversitesi

    Tekstil Mühendisliği Ana Bilim Dalı

    PROF. DR. MUHAMMET UZUN

    DR. ABDULKADİR ŞANLI

  5. Synthesis and analysis of tungsten oxide-based chromogenic systems

    Tungsten oksit tabanlı kromojenik sistemlerin üretimi ve analizi

    AMIN TABATABAEI MOHSENI

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    Fizik ve Fizik Mühendisliğiİstanbul Teknik Üniversitesi

    Nanobilim ve Nanomühendislik Ana Bilim Dalı

    DOÇ. DR. ESRA ÖZKAN ZAYİM