Development of an integrated direct Membrane Filtration (DMF) and Anaerobic Membrane Bioreactor (AnMBR) System for Dilute Municipal Wastewater Treatment
Başlık çevirisi mevcut değil.
- Tez No: 770010
- Danışmanlar: DR. ROBERT BAİR
- Tez Türü: Doktora
- Konular: Çevre Mühendisliği, Environmental Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2020
- Dil: İngilizce
- Üniversite: University of South Florida
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 198
Özet
Özet yok.
Özet (Çeviri)
The total electricity consumption due to municipal wastewater treatment in the US accounts for 1.3% of total demand. Also, a significant portion of biodegradable constituents in wastewater is converted into biomass, which needs further processing. On the one hand, an excessive amount of energy and chemicals are being used to treat wastewater, but on the other hand, resources (such as nitrogen and phosphorus, energy, and water) in wastewater are being discharged or removed rather than recovered. From this perspective, new wastewater treatment technologies are sorely needed to facilitate resource recovery from wastewater for a better, more sustainable future. Anaerobic membrane bioreactor (AnMBR) technology has often been appointed to being capable of such treatment performances due to their small footprint and high-quality effluent, suitable for resource recovery applications provided by ultrafiltration membranes. The utilization of membranes also enables the decoupling of sludge retention time (SRT) and reduces the hydraulic retention time (HRT) significantly compared to conventional anaerobic digestion systems, which can improve the overall throughput immensely. However, the widespread applications of this process are limited due to WW being dilute in nature. In this research, a novel WW treatment concept was tested for achieving a higher throughput and enabling increased energy recovery from dilute municipal wastewater. To achieve this, a direct membrane filtration (DMF) process utilizing a crossflow ultrafiltration membrane configuration was assessed, improved, and integrated with an AnMBR. In the first design, DMF process was operated in a batch mode in order to achieve a concentration factor of 10 (CF10) (CF = initial feed volume/final concentrate volume) at an initial flux of 75 LMH. This initial testing revealed that DMF of dilute WW caused severe fouling at a 30.6 mbar/h rate and the process was only operated around 30 hours before reaching to a 1 bar trans membrane ix pressure (TMP). Severe fouling also caused a rapid flux decline and a final flux of 15 LMH was observed. Therefore, an improved configuration with a concentrically baffled settling tank (CBST) was designed, and semi continuous operations were tested. The results showed only 0.63 mbar/h fouling rate during 180-hour CF10 operation without any flux decline at 50 LMH. Also, only 15% influent tCOD lost to the permeate while 69% was concentrated and fed into the AnMBR for energy recovery. The high strength concentrate increased the overall AnMBR removal efficiency from 78% to 96% and the biogas production 9.7 times compared to the startup period. The corresponding 15.54 kWh/m3 energy recovery was determined to be enough to offset the background energy demand for the DMF-AnMBR process and for influent heating at 10°C to 35°C when a permeate heat pump technology was incorporated.
Benzer Tezler
- Optimization of anaerobic membrane bioreactors for sludge treatment
Anaerobik membran biyoreaktörler ile çamur arıtımı optimizasyonu
AMR MUSTAFA ABDELRAHMAN
Doktora
İngilizce
2023
Çevre Mühendisliğiİstanbul Teknik ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DOÇ. DR. MUSTAFA EVREN ERŞAHİN
PROF. DR. EVELİNE VOLCKE
- Fabrication of innovative nanofiber membranes and development of removal systems for pollutants in various environments
Farklı ortamlardaki kirleticiler için yenilikçi nanofiber membranların üretilmesi ve giderim sistemlerinin geliştirilmesi
ELİFNUR GEZMİŞ YAVUZ
Doktora
İngilizce
2024
Çevre Mühendisliğiİstanbul Teknik ÜniversitesiÇevre Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ DERYA YÜKSEL İMER
- An Integrated fem/bem approach to the prediction of wterior noise levels of vehicle body structures
Araç gövdesi yapılarının iç akustik alanlarının belirlenmesi için bir bütünleşik femibem yaklaşımı
ŞADİ KOPUZ
Doktora
İngilizce
1995
Makine MühendisliğiOrta Doğu Teknik ÜniversitesiPROF.DR. M. ÇALIŞKAN
PROF.DR. Y. S. ÜNLÜSOY
- Kentsel su döngüsünde mikrobiyal kontaminantların sürveyanı: Fırsatçı patojenlerin moleküler karakterizasyonu ve antimikrobiyal direnç profilinin araştırılması
Microbial contaminants surveillence in the urban water cycle: Molecular characterization of oppurtunistic pathogens and antimicrobial resistance profile
BİNNUR KIRATLI
- Fabrication of low temperature co-fired ceramic (LTCC)-based sensor and micro-fluidic structures
Başlık çevirisi yok
HANSU BİROL