Derin öğrenme ve makine öğrenmesi yöntemleri ile hidroponik tarım
Hydroponic agriculture with deep learning and machine learning methods
- Tez No: 774054
- Danışmanlar: DOÇ. DR. MEHMET HACIBEYOĞLU
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Necmettin Erbakan Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 61
Özet
Günümüzde dünyamızın hızla artan nüfusu karşısında, hızla azalan ham madde ve besin gibi ihtiyaçların karşılanması için araştırmacılar yeni kaynak arayışlarının yanında var olan kaynakları daha etkin ve verimli kullanan çalışmalara da yöneldiler. İnsanlığın en büyük ihtiyaçlarından biri olan besin ihtiyacının karşılanmasında kullanılabilecek alternatif yöntemlerden biri olan hidroponik tarımın kullanımı gün geçtikçe daha popüler hale gelmiştir. Toprak yerine besin solüsyonlu su kullanılması, hava şartlarından etkilenmemesi, kapalı alanlarda uygulanabilmesi ve dikey yönlü olabilmesi hidroponik tarımı diğer tarım yöntemlerinden daha farklı kılan özelliklerdir. Bunun yanında bu tarım yönteminde toprak bulunmaması beraberinde daha çok gözlem ve gözetim ihtiyacını getirmektedir. Bu çalışmanın amacı, hidroponik tarımda verimin artırılması için gerekli olan gözlem ve gözetim ihtiyacının makine öğrenmesi ve derin öğrenme yöntemleri kullanılarak sağlanabileceğini göstermektir. Bu amaçla beş adet makine öğrenmesi ve derin öğrenme yöntemleri kullanılarak yapılan deneysel çalışmalarda hidroponik tarımın verimliliğinin arttırıldığı gözlemlenilmiştir. Derin öğrenme yöntemi %99,7 başarı ile diğer yöntemlere göre daha iyi sonuç elde etmiştir.
Özet (Çeviri)
In the face of the rapidly increasing population of our world today, researchers have turned to studies that use existing resources more effectively and efficiently in addition to searching for new resources in order to meet the rapidly decreasing needs such as raw materials and nutrients. The use of hydroponic agriculture, which is one of the alternative methods that can be used to meet the need for nutrients, which is one of the greatest needs of humanity, has become more popular day by day. The use of nutrient solution water instead of soil, the fact that it is not affected by weather conditions, that it can be applied indoors and that it can be vertically oriented are the characteristics that make hydroponic agriculture different from other agricultural methods. In addition, the lack of soil in this agricultural method brings with it the need for more observation and supervision. The aim of this study is to show that the observation and surveillance needs necessary to increase yield in hydroponic agriculture can be achieved using machine learning and deep learning methods. For this purpose, it has been observed that the efficiency of hydroponic agriculture has been increased in experimental studies conducted using five machine learning and deep learning methods. The deep learning method has achieved better results with 99.7% success compared to other methods.
Benzer Tezler
- A new agro-meteorological drought index based on remote sensing
Uzaktan algılama temelli yeni bir agro-meteorolojik kuraklık indeksi
EYYUP ENSAR BAŞAKIN
Doktora
İngilizce
2024
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET CÜNEYD DEMİREL
- Coğrafi bilgi sistemi tabanlı hidrolojik havza modellemesi ve makine öğrenmesi yöntemiyle hidrograf tahmini
Geographic information systems-based hydrological basin modeling and hydrograph prediction using machine learning methods
BURAK CAN
Yüksek Lisans
Türkçe
2024
İnşaat MühendisliğiAkdeniz Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. HALİL İBRAHİM BURGAN
- Multi-scale rainfall predictions using data-driven models with advanced data preprocessing techniques
Gelişmiş veri ön işleme teknikleriyle veri odaklı modeller kullanarak çok ölçekli yağış tahminleri
KÜBRA KÜLLAHCI
Doktora
İngilizce
2025
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. ABDÜSSELAM ALTUNKAYNAK
- Derin öğrenme ve makine öğrenmesi yöntemlerini entegre eden hibrit modeller ile insan aktiviteleri sınıflandırması
Human activity classification with hybrid models integrating deep learning and machine learning methods
ŞEYMA NUR SÖNMEZ
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
PROF. DR. İBRAHİM ALPER DOĞRU
- Yapay zekâ ve sinyal işleme yöntemleri ile rulmanlarda taşlama yanığı hatasının tespiti
Detection of grinding burn defect in bearings with artificial intelligence and signal processing methods
NURDOĞAN CEYLAN
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Uygulamalı Bilimler ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. SEZGİN KAÇAR