Geri Dön

Automated clustering of behaviour modules for social robots

Sosyal robotlar için davranış modüllerinin otomatik kümelenmesi

  1. Tez No: 781945
  2. Yazar: MUNEER MOHAMMED ADNAN AL-ZUABIDI
  3. Danışmanlar: DOÇ. DR. ZÜHAL ERDEN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mekatronik Mühendisliği, Mechatronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Mekatronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 111

Özet

Bu tezde, sosyal robotların davranış modüllerinin kümeleme algoritmaları kullanılarak otomatik oluşturulması için bir yöntem sunulmuştur. Davranış modülleri, kişiselleştirilmiş sosyal robotların tasarımında büyük önem taşımaktadır. Sunulan araştırmada, sosyal robotların“algı”,“biliş”ve“motorik eylem”olarak adlandırılan davranış öğelerini kümelemek için K-means, Aglomerative Clustering ve BRICH gibi farklı kümeleme tekniklerinin uygulanabilirliği incelenmiştir. Bu amaçla, daha önce yapılan bir çalışmada elde edilen 28x3 boyutunda ve yukarıdaki üç davranış için dilsel değerlerden oluşan bir veri listesi kullanılmıştır. Geliştirilen bir haritalama yöntemi ile sayısal olarak temsil edilen verilerle sekiz farklı kümeleme algoritması kullanılarak oluşturulan çeşitli davranış modülleri değerlendirilmiş ve üç algoritma başarılı kabul edilmiştir. Kümeleme algoritmalarıyla otomatik olarak elde edilen davranış modüllerinin 3 boyutlu gösterimi de yapılmıştır. Elde edilen modüller maliyet, hareketlilik, karmaşıklık ve güç tüketimi olmak üzere dört farklı ölçüt kullanılarak değerlendirilmiştir. Bu çalışmanın sonuçları kişiselleştirilmiş sosyal robotların sistematik tasarımı alanındaki araştırmalarda ve uygulamalarda kullanılabilir.

Özet (Çeviri)

This thesis presents a method for automatically generating behaviour modules for social robots using clustering algorithms. Behavioural modules are considered a vital element of social robot family design which falls in the benefit of individual's needs. The work includes the implementation of different clustering techniques such as K-means, Agglomerative Clustering, and BRICH to cluster behavioural elements of social robot which are categorized as“perception”,“cognition”and“motoric action”. In this thesis, a previously generated data list consisting of linguistic values from these elements in size of 28 by 3 is used. A mapping method is developed to represent the data in numeric form. Also, a 3D graphical representation of the data is obtained. In addition, a variety of behavioural modules are generated and evaluated using right clustering algorithms, three algorithms of which are decided as successful. The generated modules are evaluated based on four criteria as, cost, mobility, complexity, and power consumption. The results of this work can be used by researchers and engineers in the field of social robotics particularly during the conceptual design of personalized social robots. Additionally, the proposed criteria and visualization techniques can be used as a starting point for future research in this area.

Benzer Tezler

  1. Novel interference and spectrum aware routing techniques for cognitive radio ad hoc networks

    Tasarsız bilişsel radyo ağları için girişim ve spektruma dayalı özgün yönlendirme teknikleri

    AHMET ÇAĞATAY TALAY

    Doktora

    İngilizce

    İngilizce

    2011

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. DENİZ TURGAY ALTILAR

  2. Video görüntülerinden trafik kazası riskini gerçek zamanlı belirleyen bir sistem tasarımı

    A system design for determining traffic accident risk from real-time video images

    UYGAR ER

    Yüksek Lisans

    Türkçe

    Türkçe

    2012

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. M. ELİF KARSLIGİL

  3. Malware detection using machine and deep learning algorithms for computer devices

    Makine kullanarak kötü yazilim tespiti ve için derin öğrenme algoritmalari bilgisayar cihazlari

    MOHAMMED THAIR ABDULSATTAR ALTAIY

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Bilişim Teknolojileri Ana Bilim Dalı

    PROF. DR. OSMAN NURİ UÇAN

  4. Towards adaptive brain-computer interfaces: Statistical inference for mental state recognition

    Uyarlanabilir beyin-bilgisayar arayüzlerine doğru: Zihinsel durum tanıma için istatistiksel çıkarım

    MASTANEH TORKAMANI AZAR

    Doktora

    İngilizce

    İngilizce

    2020

    BiyomühendislikSabancı Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MÜJDAT ÇETİN

    Prof. Dr. SELİM SAFFET BALCISOY

  5. Landsat-TM görüntülerine minnaert düzeltmesinin uygulanması: Köyceğiz örneği

    Application of minnaert correction to Landsat-TM images : Köyceğiz case

    SAMURAY ELİTAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    1997

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Jeodezi ve Coğrafi Bilgi Sistemleri Ana Bilim Dalı

    PROF. DR. CANKURT ÖMERCİ