Elektrik talebinin zaman serisi analizi, yapay sinir ağları ve hibrit yöntem ile tahmini
Estimation of electricity demand with time series analysis, artificial neural networks, and a hybrid method
- Tez No: 784234
- Danışmanlar: PROF. DR. ERKAN IŞIĞIÇOK
- Tez Türü: Doktora
- Konular: Ekonometri, Enerji, İstatistik, Econometrics, Energy, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Sosyal Bilimler Enstitüsü
- Ana Bilim Dalı: Ekonometri Ana Bilim Dalı
- Bilim Dalı: İstatistik Bilim Dalı
- Sayfa Sayısı: 166
Özet
Elektrik; sürdürülebilir yaşamda önemli bir rol oynayan ve çeşitli sektörlere katma değeri çok yüksek olan enerji türüdür. Elektrik, sosyo-ekonomik kalkınmada stratejik önemde bulunduğu için ekonomik refahın ve büyümenin en önemli aktörlerindendir. Yapısı gereği depolanamayan ve üretildiği anda tüketilmesi gereken bu enerji türü, ekonomik kalkınmanın tüm yönleri ile entegre olması ve aynı zamanda tek bir modelin her zaman doğru tahminleri vermemesi sebebi ile elektrik talep tahmini çalışmaları her dönem güncelliğini korumuştur. Dolaysıyla bu tez çalışmasında elektrik talep tahmini farklı yöntem ve modeller ile tahmini gerçekleştirilmiştir. Tez çalışmasında, uygulama dönemi, 2007:01 – 2020:12 belirlenmiştir. Bu dönemin belirlenmesindeki en önemli sebep ise ekonomi ve sosyal hayatta yaşanan birtakım olumsuzlukların bulunmasıdır. Çalışma, tek değişkenli ve çok değişkenli olmak üzere iki farklı uygulama ile gerçekleştirilmiştir. Tek değişkenli modellerde, brüt elektrik talep miktarı kullanılırken, çok değişkenli model çalışmalarında ise brüt elektrik talep miktarı, tüketici fiyat endeksi, sanayi üretim endeksi, ülkeye gelen turist sayısı ve işsizlik değişkenleri kullanılmıştır. Zaman serisi modellerine ilişkin uygulamalar Eviews 10 paket programı ile gerçekleştirilirken yapay sinir ağı ve hibrit yöntem uygulamaları MATLAB ile yapılmıştır. Yapılan uygulama sonuçlarında, resmi makamlarca açıklanan 2021:01-2021:10 dönemi talep miktarı ile tek değişkenli ve çok değişkenli modeller ile tahmin edilen talep miktarları karşılaştırılmış ve istatistiksel performans kriterlerine göre en düşük hata değerlerine sahip olan model çok değişkenli yapay sinir ağı mimarisi olmuştur. Çalışma bu noktadan sonra 2022:07 dönemine kadar talep tahmini gerçekleştirilmiş ve çok değişkenli yapay sinir ağı mimarisi ile hibrit yöntem benzer dalgalanmalar sergilemiştir. Bu dönem için çok değişkenli yapay sinir ağına göre 28519.12993 GWh olarak tahmin edilirken tek değişkenli yapay sinir ağına göre ise 27009.25479 GWh tahmin edilmiştir.
Özet (Çeviri)
Electricity is a type of energy that plays an important role in sustainable life and has a very high added value in changing sectors. Electricity is one of the most important actors in economic prosperity and growth, as it has strategic importance in socio-economic development. This type of energy, which cannot be stored due to its nature and must be consumed as soon as it is produced, has always been up-to-date in electricity demand forecasting studies since it is integrated with all aspects of economic development, and at the same time, a single model does not always give accurate forecasts. Therefore, in this thesis, electricity demand forecasting was carried out with different methods and models. The application period for the thesis study is January 2007–December 2020. The most important reason for determining this period is the existence of some negativities in economic and social life. The study was carried out with two different applications as univariate and multivariate. In univariate models, gross electricity demand amount is used, while in multivariate model studies, gross electricity demand amount, consumer price index, industrial production index, number of tourists coming to the country, and unemployment variables are used. While applications related to time series models were carried out with Eviews 10 package program, artificial neural network and hybrid method applications were made with MATLAB. In the results of the application, the demand amount for the period January 2021–November 2021 announced by the official authorities and the estimated demand amounts with univariate and multivariate models were compared, and the model with the lowest error values according to statistical performance criteria was the multivariate artificial neural network architecture. After this point, demand forecasting was carried out until July 2022, and the multivariate artificial neural network and hybrid method exhibited similar fluctuations. For this period, it was forecast as 28519.12993 GWh according to the multivariate artificial neural network, while it was forecast as 27009.25479 GWh according to the univariate artificial neural network.
Benzer Tezler
- Zaman serisi analizi ile yapay sinir ağları kestirimlerinin karşılaştırılması
Comparison of artificial neural network estimations with time series analysis
ÇİĞDEM SEDA USLU
Yüksek Lisans
Türkçe
2011
İstatistikMimar Sinan Güzel Sanatlar Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. GÜLAY KIROĞLU
- Short term electrıcıty consumptıon forecastıng usıng long short-term memory cells
Uzun kisa vadeli̇ hafiza ağlari i̇le kisa vadeli̇ elektri̇k tüketi̇m tahmi̇ni̇
ANIL TÜRKÜNOĞLU
Yüksek Lisans
İngilizce
2019
Enerjiİstanbul Teknik ÜniversitesiEnerji Bilim ve Teknoloji Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BURAK BARUTÇU
- Recurrent neural network based approaches for electricity consumption forecasting
Tekrarlayan sinir ağı tabanlı elektrik tüketim tahmini
ALPER TOKGÖZ
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. GÖZDE ÜNAL
- Makine öğrenme yöntemleri yardımıyla tüketim istatistiklerine göre talep tahmini
Load forecasting by machine learning methods
MURATCAN ATALAY
Yüksek Lisans
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Kültür ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. RÜŞTÜ MURAT DEMİRER
- Rüzgar hız ve enerji verilerinin tahmini için kaotik yaklaşımla birlikte destek vektör regresyonunun kullanımı
The use of support vector regression in conjunction with the chaotic approach for the forecasting of wind speed and energy data
ELİF BEYZA ÇATALBAŞ ERDOĞAN
Yüksek Lisans
Türkçe
2019
Meteorolojiİstanbul Teknik ÜniversitesiMeteoroloji Mühendisliği Ana Bilim Dalı
PROF. KASIM KOÇAK