Bir örnekle öğrenme yaklaşımı kullanılarak çatı tipi sınıflandırması
Roof type classification using one-shot learning approach
- Tez No: 786063
- Danışmanlar: DOÇ. DR. EMRE SÜMER
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Mühendislik Bilimleri, Computer Engineering and Computer Science and Control, Science and Technology, Engineering Sciences
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Başkent Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 67
Özet
Son zamanlarda, Evrişimsel Sinir Ağları tabanlı metotlar uzaydan çekilmiş görüntüler üzerinde çatı tipi sınıflandırması yapmak için sıkça kullanılmaktadır. Bu metotlar ile yapılan sınıflandırma işlemlerinde en önemli sorun ilgili metotların çok fazla sayıda eğitim verisine ihtiyaç duymasıdır. İnsanların bir nesneyi tanıması için genelde bir veya birkaç örnek yeterlidir. Bir örnekle öğrenme yaklaşımı da aynı insan beyni gibi yalnızca bir veya birkaç eğitim örneğinden nesne kategorileri hakkında bilgi edinmeyi amaçlamaktadır. Bu metot, çok büyük miktarda veri kullanmak yerine her bir sınıf için yalnızca birkaç adet örnek kullanılarak öğrenme sağlayan bir yaklaşımdır. Bu çalışmada, Siyam Sinir Ağları modelini temel alan bir örnekle öğrenme yaklaşımı kullanılarak eğitim için az sayıda örnek ile çatı tipi sınıflandırması yapılmıştır. Eğitim için kullanılan resimler çatı verisi bulma zorluğu nedeniyle yapay olarak üretilmiştir. Test için de gerçek çatı resimlerinden oluşan iki farklı veri kümesi kullanılmıştır. Test ve eğitim veri kümeleri Teras (Flat), Beşik (Gable) ve Kırma (Hip) olmak üzere 3 farklı çatı tipinden oluşmaktadır. Yapay olarak üretilen resimlerle eğitilen Siyam Sinir Ağı modelinin ilk veri kümesine ait çatı resimleri ile test edilmesi sonucunda ortalama %66'lık bir sınıflandırma başarımı sağlanırken ikinci veri kümesi ile bu oran %85 olarak hesaplanmıştır. Aynı veriler Evrişimsel Sinir Ağları ve Destek Vektör Makineleri ile de test edilmiş, en yüksek başarımın Siyam Sinir Ağı modeli ile elde edildiği görülmüştür.
Özet (Çeviri)
Recently, Convolutional Neural Network-based methods have been used frequently for roof-type classification on images taken from space. The most important problem with classification processes using these methods is that they require a large amount of training data. Usually, one or a few samples are enough for a human to recognise an object. Like the human brain, the One-Shot Learning approach aims to learn object categories with just one or a few training examples per class, rather than using huge amounts of data. In this study, roof-type classification was carried out with a few training examples using the one-time learning approach and the so-called Siamese Neural Network method. The images used for training were artificially produced due to the difficulty of finding roof data. Two different data sets consisting of real roof pictures were used for the test. The test and training data set consisted of three different roof types: Flat, Gable and Hip. Finally, the Siamese Neural Network model, which was trained with artificially produced pictures, achieved an average classification performance of 66% as a result of testing with real roof pictures. With the other data set prepared, a classification success of 85% was achieved. The same data were also tested with Convolutional Neural Networks and Support Vector Machines, and it was found that the highest success was achieved with the Siamese Neural Network model.
Benzer Tezler
- Building detection from very high resolution satellite images with deep learning approach
Derin öğrenme yaklaşımı ile çok yüksek çözünürlüklü uydu görüntülerinde bina tespiti
ESRA ÖZAYDIN
Yüksek Lisans
İngilizce
2021
Jeodezi ve Fotogrametriİstanbul Teknik ÜniversitesiGeomatik Mühendisliği Ana Bilim Dalı
PROF. DR. ELİF SERTEL
- Self-supervised building detection with decision fusion
Kendinden denetimli karar füzyonu ile binaların tespiti
ÇAĞLAR ŞENARAS
Doktora
İngilizce
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilişim Sistemleri Ana Bilim Dalı
PROF. DR. FATOŞ TUNAY YARMAN VURAL
YRD. DOÇ. DR. PEKİN ERHAN EREN
- Derin metrik öğrenme ile histopatolojik görüntülerin sınıflandırılması
Classification of histopathological images with deep metric learning
MAHMUT KAYA
Doktora
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. HASAN ŞAKİR BİLGE
- Yaşam temelli öğrenme yaklaşımının öğrencilerin çevre bilinci ve çevresel duyarlılık kazanımına etkisi: Evsel atıklar ve geri dönüşüm konusu
The effect of context- based learning approach on students' environmental awareness and environmental sensitivity: Domestic wastes and recycling subject
ALİ DAĞLI
Yüksek Lisans
Türkçe
2021
Eğitim ve ÖğretimKahramanmaraş Sütçü İmam ÜniversitesiFen Bilgisi Eğitimi Ana Bilim Dalı
PROF. DR. MUSTAFA YAZICI
- A multi-instance based learning system for scene recognition
Sahne tanıma problemi̇ i̇çi̇n çoklu örnek tabanlı öğrenme si̇stemi̇
EZGİ EKİZ
Yüksek Lisans
İngilizce
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. NAZLI İKİZLER CİNBİŞ