Geri Dön

Görüntü işleme teknikleri ve sezgisel yöntemler kullanılarak çekirdek görüntü segmentasyonu

Nuclei image segmentation using image processing techniques and heuristic methods

  1. Tez No: 806468
  2. Yazar: NUREDEEN A A MATOUG
  3. Danışmanlar: DOÇ. DR. YASEMİN GÜLTEPE
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Kastamonu Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Malzeme Bilimi ve Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 89

Özet

Modern bilimsel laboratuvar ortamında dijital patoloji giderek önem kazanmakta ve artan bir teknolojik gereksinim haline gelmektedir. Özellikle yorumlanabilir modellerin geliştirilmesi için hücre çekirdeklerinin saptanması ve segmentasyonu son derece önemlidir. Dijital görüntü işleme, görüntü iyileştirme ve görüntü tabanlı örüntü tanıma alanlarındaki güçlü araştırma programlarını destekler. Çeşitli görüntü işleme teknikleri görüntü bölütleme, verilen görüntüyü analiz etme adımında hayati bir rol oynar. Görüntü segmentasyonu, görüntüleri analiz etmek ve onlardan veri çıkarmak için temel adımdır. Bu tezde, bir görüntünün segmentasyonu bölütlemek için kenar bulma, eşikleme, bölge büyütme ve kümeleme işlemi gerçekleştirilmiştir. Önerilen algoritmayı daha önce önerilen algoritmalarla karşılaştırırsak, bu algoritma çok fazla parametre gerektirmez ve ayrıca daha hızlı, daha basit ve daha esnektir. Bu tez çalışmasında PSB 2015 CrowdSourcingNucleiAnnotation ve 2018 Data Science Bowl veri setlerinden boyanmış H&E numunelerinin oluşturduğu histolojik görüntüler üzerinde gerçekleştirilmiştir. Görüntülerdeki gürültü ilk olarak morfolojik teknikler kullanılarak giderildi ve ardından, çekirdek görüntülerinin segmentasyonu için Yapay Arı Kolonisi tabanlı uyarlanabilir histogram algoritması kullanılmıştır. Sonuçlar diğer optimizasyon algoritmaları ile karşılaştırarak doğruluğunu ve etkinliği test edilmiştir. Kanser çekirdekleri için ortalama %93,64 doğruluk oranı sağlanmıştır.

Özet (Çeviri)

Digital pathology is becoming increasingly important in the modern scientific laboratory environment and is becoming an increasing technological requirement. In particular, the detection and segmentation of cell nuclei are extremely important for the development of interpretable models. It supports strong research programs in the fields of digital image processing, image enhancement and image-based pattern recognition. Various image processing techniques image segmentation plays a vital role in the step of analyzing the given image. Image segmentation is the basic step for analyzing images and extracting data from them. In this thesis, edge finding, thresholding, region magnification and clustering operations were performed to divide the segmentation of an image. If we compare the proposed algorithm with the previously proposed algorithms, this algorithm does not require a lot of parameters, and it is also faster, simpler and more flexible. In this thesis, PSB was performed on histological images created by H&E samples dyed from the 2015 Crowdsourcing Nucleiannotation and 2018 Data Science Bowl datasets. The noise in the images was first eliminated using morphological techniques, and then an Artificial Bee Colony based adaptive histogram algorithm was used for the segmentation of the nuclei images. The accuracy and effectiveness of the results have been tested by comparing them with other optimization algorithms. An average accuracy rate of 93.64% was achieved for cancer nuclei.

Benzer Tezler

  1. Üniversite kampüsündeki araç plaka tanıma ve takibi için matematik ve algoritmik ilkeler

    University campus vehicles number plate recognition and following mathematical and algorithmic principles

    AHMED AMİR KHAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKahramanmaraş Sütçü İmam Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MAHİT GÜNEŞ

  2. Integrating path planning and image processing with UAVs for disease detection and yield estimation in indoor agriculture

    Kapalı alan tarımda hastalık tespiti ve verim tahmini için rota planlama ve görüntü işlemenin İHA'larla entegre edilmesi

    ONAT ERDOĞMUŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ERDİNÇ ALTUĞ

  3. High impedance fault detection in medium voltage distribution systems using wavelet transform

    Dalgacık dönüşümü kullanılarak orta gerilim dağıtım sistemlerinde yüksek empedanslı arıza tespiti

    BARAA MAKKAWI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖMER USTA

  4. Sonar algılayıcılar ve sezgisel yöntemler kullanarak otonom robotların engelden sakınımı

    Obstacle avoidance of autonomous robots by using sonar sensors and heuristic methods

    RASİM TOPUZ

    Doktora

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Elektronik-Bilgisayar Eğitimi Ana Bilim Dalı

    PROF. DR. MEHMET YILDIRIM

  5. TV ve set üstü cihaz arayüz kullanılabilirlik ölçümü

    Usability evaluation of TV and set-top box interfaces

    AYCAN PEKPAZAR

    Doktora

    Türkçe

    Türkçe

    2021

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÇİĞDEM ALTIN GÜMÜŞSOY