Çelik lifli betonun basınç ve çekme dayanımının yapay sinir ağlarıyla tahmin edilmesi
Compressive and tensile strength prediction of steel fiber concrete with artificial neural networks
- Tez No: 810390
- Danışmanlar: DR. ÖĞR. ÜYESİ ŞULE BAKIRCI ER, DR. ÖĞR. ÜYESİ EDA AVANOĞLU SICACIK
- Tez Türü: Yüksek Lisans
- Konular: İnşaat Mühendisliği, İstatistik, Civil Engineering, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2023
- Dil: Türkçe
- Üniversite: Kırıkkale Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 85
Özet
Betonun dayanım özelliklerini iyileştirmek amacıyla çeşitli lif tipleri çeşitli oranlarda betonlara katılabilmektedir. Lifli betonun dayanım özelliklerini belirlemek amacıyla yaygın bir formülasyon veya modelleme ile karşılaşılmamıştır. Bu durum deney yapma zorunluluğu doğurmaktadır. Deney yapmadan sonuçların tahmin edilebilmesinde kullanılan yöntemlerden birisi de yapay sinir ağlarıdır. Yapay sinir ağları çok sayıda değişken ile doğrusal olmadan, girdi değerlerinden çıktı tahmin etmek üzerine çalışan bir yapay zekâ teknolojisidir. Bu çalışmada çelik lifli betonların basınç ve çekme dayanımlarını beton karışım oranı ve karışıma katılacak çelik lif tipi ve özelliklerinin sayısal verilerini kullanarak oluşacak betonun basınç ve çekme dayanımını tahmin eden MATLAB tabanlı bir yapay sinir ağı modellenmiştir. Yapay sinir ağı 15 elemanlı girdi katmanı, gizli katmanında 10 nöron ve 1 çıktı değeri olacak şeklinde yapılandırılıp ileri yönlü geri yayılım algoritması kullanacak şekilde tasarlanmıştır. Yapay sinir ağı literatürde bulunan 24 araştırmadan 302 veri setiyle eğitilerek öğrenme sağlanmıştır. Oluşturulan yapay sinir ağı ile basınç dayanımı tahmininde 0,95 çekme dayanımı tahmininde 0,98 regresyon değerine ulaşılmıştır. Yapay sinir ağı, test amaçlı yeni veri setleri girildiğinde çekme dayanımı sonuçlarını yüksek güvenilirlikle tahmin edebilmiştir.
Özet (Çeviri)
Various fiber types can be added to concrete in different proportions in order to improve the strength properties of concrete A common formulation or modeling has not been encountered to determine the strength properties of fibrous concrete.This situation necessitates experimentation. One of the methods used to predict the results without experimenting is artificial neural networks. Artificial neural networks are an artificial intelligence technology that works on estimating the output from the input values without being linear with a large number of variables. In this study, a Matlab-based artificial neural network is modeled to predict the compressive and tensile strength of the concrete to be formed by using the compressive and tensile strengths of steel fiber concretes, the concrete mix ratio, and the steel fiber type and properties to be added to the mixture. The artificial neural network is structured with 15 elements in the input layer, 10 neurons in the hidden layer, and 1 output value and designed to use forward-back propagation algorithm. Learning was provided by training the artificial neural network with 302 data sets from 24 studies in the literature. By the artificial neural network created, a regression value of 0.95 in estimation of compressive strength and 0.98 in estimation of tensile strength was reached. The neural network was able to predict the tensile strength results with high reliability when new datasets were entered for testing purposes.
Benzer Tezler
- Çelik lif uç geometrisinin beton özelliklerine etkisi
Effects of steel fiber geometry on mechanical properties of concrete
UĞUR ALPARSLAN
Yüksek Lisans
Türkçe
2015
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. ÖZKAN ŞENGÜL
- Farklı tipteki polipropilen lif katkılı normal ve geri dönüştürülmüş agregalı betonların özeliklerinin araştırılması ve incelenmesi
Investigation and examination of the properties of normal and recycled aggregate concretes with different types of polypropylene fiber additives
HASAN BAYLAVLI
Doktora
Türkçe
2021
İnşaat MühendisliğiEskişehir Osmangazi Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. İLKER BEKİR TOPÇU
- Lifli hibrit betonların mekanik ve durabilite özelliklerinin araştırılması ve performans optimizasyonu
Investigation of mechanical and durability properties of hybrid fiber concretes and performance optimization
MÜZEYYEN BALÇIKANLI BANKİR
Doktora
Türkçe
2020
İnşaat Mühendisliğiİskenderun Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. UMUR KORKUT SEVİM
- Seismic retrofit of full-scale substandard rectangular RC columns through cfrp jacketing and external steel ties
LP kompozitler ile mevcut betonarme binalardaki dikdörtgen kesitli kolonların dayanım ve sünekliklerinin geliştirilmesi
HAMID FARROKH GHATTE
Doktora
İngilizce
2016
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. ALPER İLKİ
- Çelik lif donatılı betonların performansa dayalı tasarımı ve optimizasyonu
Optimization and performance based design of steel fiber reinforced concretes
MUHSİN YALÇIN
Doktora
Türkçe
2009
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. CANAN TAŞDEMİR