Geri Dön

Radio frequency fingerprinting-based emitter localization in IoT-enabled smart cities

IoT erişimli akıllı şehirlerde radyo frekansı parmak izi tabanlı yayıcı konumlandırma

  1. Tez No: 815152
  2. Yazar: DEREN DOĞAN
  3. Danışmanlar: DOÇ. DR. YASER DALVEREN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 72

Özet

Kablosuz teknolojinin hızlı gelişimi, Nesnelerin İnterneti'nin (IoT) önemini artırdı. IoT uygulamaları, çeşitli sektörlerde maliyetleri azaltmak ve performansı yükseltmek için kullanılıyor. Akıllı şehirlerde bu tür uygulamalardan yararlanılarak konumlandırma tabanlı hizmetler de sunulmaktadır. Coğrafi bölgelerde konumlandırma talebi nedeniyle uzun yıllardır çeşitli konumlandırma prosedürleri kullanılmaktadır. Radyo frekansı parmak izi (RFF) konumlandırması, makine öğrenimi (ML) yöntemlerindeki son gelişmelerin sağladığı avantajlar dikkate alındığında en etkili yöntemlerden biri haline geldi. Makul fiyatlı ve yüksek performanslı bir IoT kablosuz teknolojisini uygulamak, konumlandırmada zorlu bir konudur. Bu bağlamda, IQRF teknolojisi yeni fırsatlar sunmaktadır. Bu nedenle, 868 MHz bandında çalışan IQRF sensör düğümlerini içeren bir sistemde bu tez, makine öğreniminde denetimli sınıflandırma yöntemlerini uygulayan bir alınan sinyal gücü göstergesi (RSSI) parmak izi tabanlı konumlandırma yöntemi önerir. Bu amaçla, Görüş Hattı (LoS) bağlantıları için yerel bir dış ortamda ölçümler yürütüldü. Elde edilen sonuçlar,“Torbalı Ağaçlar”,“Ağırlıklı k-NN”ve“Orta Gaussian SVM”yöntemlerinin son derece güçlü tahmin doğruluğunu gösterir. Tezin sonuçları, akıllı şehirlerde radyo frekansı parmak izine dayalı konumlandırma sistemlerinin ilerlemesine destek olma potansiyeline sahiptir.

Özet (Çeviri)

The rapid advancement of wireless technology has grown the significance of the Internet of Things (IoT). IoT applications are being used to decrease costs and improve performance across various industries. In smart cities, such applications are also utilized to offer localization-based services. Several localization procedures have been used for long years due to the demand for localization in geographic regions. Radio frequency fingerprinting (RFF) localization has become one of the most effective methods when considering the advantages provided by recent advancements in machine learning (ML) methods. Implementing a reasonable-priced and high-performance IoT wireless technology is a challenging issue in localization. In this regard, IQRF technology presents novel opportunities. Thus, in a system comprising IQRF sensor nodes operating in the 868 MHz band, this thesis proposes a received signal strength indicator (RSSI) fingerprint-based localization method implementing supervised classification methods in ML. To this end, measurements for Line-of-Sight (LoS) links were conducted in a local outdoor environment. The achieved results show the exceptionally strong prediction accuracy of the“Bagged Trees”,“Weighted k-NN”, and“Medium Gaussian SVM”methods. The results of the thesis have the potential to assist in the advancement of localization systems based on RFF in smart cities.

Benzer Tezler

  1. Variational mode decomposition based radio frequency fingerprinting of bluetooth devices

    Varyasyonel kip ayrıştırıcı kullanarak bluetooth cihazların radyo frekans parmak izi çıkarımı

    ALGHANNAI AGHANAIYA

    Doktora

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik MühendisliğiAtılım Üniversitesi

    Mühendislik Sistemlerinin Modellenmesi ve Tasarımı Ana Bilim Dalı

    Prof. Dr. ALİ KARA

  2. Use of wavelet decomposition in radio frequency fingerprinting of bluetooth signals

    Bluetooth sinyanlerinin radyo frekansı parmak izi kontrolünde dalgacık ayrıştırma kullanımı

    HEMAM AL-MASHAQBEH

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Elektrik ve Elektronik MühendisliğiAtılım Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ YASER DALVEREN

    PROF. DR. ALİ KARA

  3. Use of radiofrequency (RF) fingerprinting for device authorizations

    Radyo frekansı (RF) parmak izi kullanarak cihaz yetkilendirmesi

    RAİF İYİPARLAKOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik MühendisliğiAtılım Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. YASER DALVEREN

  4. A generalized localization framework for terrestrial and aerial systems

    Kara ve hava sistemleri için genel bir konumlandırma çerçevesi

    SALİHA BÜYÜKÇORAK EDİBALİ

    Doktora

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜNEŞ KARABULUT KURT

  5. Design and implementation of modular front end for rf fingerprinting of bluetooth signals

    Bluetooth sinyallerinin rf parmak izi için modüler ön uç tasarımı ve uygulaması

    EMRE UZUNDURUKAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Elektrik ve Elektronik MühendisliğiAtılım Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ KARA