İç hastalıkları alanında makine öğrenmesi yöntemlerinin uygulamaları ve karşılaştırılmaları
Applications and comparisons of machine learning methods in the field of internal diseases
- Tez No: 821232
- Danışmanlar: DR. ÖĞR. ÜYESİ BEDRİ BAHTİYAR
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Pamukkale Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 92
Özet
İnsan sağlığı, kaliteli yaşamı doğrudan etkileyen bir faktördür. Bu kalitenin bozulmaması için doğru zamanda gerekli testler yapılmalı ve tedbir alınmalıdır. Ancak artan nüfus sayısıyla hekimlere düşen iş yoğunluğu da doğrudan artmaktadır. Bu sebeple hastalara ayrılan süre kısalmaktadır. Bu sürede problemi anlayabilme ve hastalık teşhisi koyma süreci ise sağlık alanının en önemli ve en büyük problemlerden biridir. Bu süreci kolaylaştırmak için yapay zeka ile çeşitli çözümler uygulanmaktadır. Bu tez çalışmasında Pamukkale Üniversitesi Hastanesi İç Hastalıkları Polikliniğine başvurmuş hastaların kan testleri bilgilerini içeren veri seti ele alınarak makine öğrenmesinin çok-sınıflı ve çok etiketli sınıflandırma özelliği üzerinde çalışılmıştır. Ayrıca literatürde fazlaca çalışılmış olan Pima Indian Diabetes veri seti üzerinde de ikili sınıflandırma çalışması yapılmıştır. Veri setlerine yapay sinir ağı, destek vektör makineleri ve hafif gradyan artırma makineleri makine öğrenmesi yöntemleri uygulanmış ve modellerin performansları karşılaştırılmıştır.
Özet (Çeviri)
Human health is a factor that directly affects the quality of life. In order not to deteriorate this quality, necessary tests should be done at the right time and precautions should be taken. However, with the increasing population, the workload of doctors directly increases. For this reason, the time allocated to patients is shortened. In this period, the process of understanding the problem and diagnosing the disease is one of the most important and biggest problems in the field of health. To facilitate this process, various solutions are implemented with artificial intelligence. In this thesis, the multi-class and multi-label classification feature of machine learning was studied by considering the data set containing the blood test information of the patients who applied to the Pamukkale University Hospital Internal Diseases Polyclinic. In addition, a binary classification study was carried out on the Pima Indian Diabetes data set, which has been studied extensively in the literature. Artificial neural network, support vector machines and light gradient boosting machine machine learning methods were applied to the datasets and the performances of the models were compared.
Benzer Tezler
- Diyabetik retinopati teşhisine yönelik yapay zekâ tabanlı karar destek modeli
An artificial intelligence-based decision support model for diabetic retinopathy diagnosis
ABDULRAHMAN ÇAVLI
Yüksek Lisans
Türkçe
2024
Bilgi ve Belge YönetimiFırat ÜniversitesiTeknoloji ve Bilgi Yönetimi Ana Bilim Dalı
DOÇ. DR. MESUT TOĞAÇAR
- Mathematical model-based clinical decision support system algorithm design study that can support the diagnosis of celiac disease
Çölyak hastalığının teşhisine destek verebilecek matematik model tabanlı kds algoritması tasarımı
ELİF KESKİN BİLGİÇ
Doktora
İngilizce
2024
Mühendislik Bilimleriİstanbul Üniversitesi-CerrahpaşaBiyomedikal Mühendisliği Ana Bilim Dalı
DR. İNCİ ZAİM GÖKBAY
DOÇ. DR. YUSUF KAYAR
- Yapay zeka kullanılarak klinik tanının öngörülmesinde biyokimyasal test sonuçlarının rolünün araştırılması
Investigation of the role of biochemical test results in prediction of clinical diagnosis using artificial intelligence
YUSUF YEŞİL
Tıpta Uzmanlık
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul ÜniversitesiTıbbi Biyokimya Ana Bilim Dalı
PROF. DR. EVİN ADEMOĞLU
DOÇ. DR. ALPAY MEDETALİBEYOĞLU
- Glokom hastalığının derin öğrenme yöntemiyle ön tanısı
Pre-diagnosis of glaucoma disease with deep learning
MAHMOUD NAES
Yüksek Lisans
Türkçe
2023
Bilim ve TeknolojiKarabük ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HAKAN YILMAZ
- Yapay zeka destekli odyometri ölçüm sisteminin tasarımı ve gerçekleştirilmesi
Design and implementation of supported artificial intelligence audiometer meas-urement system
BÜŞRA ER
Yüksek Lisans
Türkçe
2020
Mühendislik BilimleriAfyon Kocatepe ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ UĞUR FİDAN