Geri Dön

Derin öğrenme teknikleri kullanılarak meyve ve sebzede çeşitli hastalıkların tespit edilmesi

Detection of various diseases in fruit and vegetables using deep learning techniques

  1. Tez No: 826762
  2. Yazar: SEVİL ÖZCAN
  3. Danışmanlar: DOÇ. DR. EMRULLAH ACAR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Batman Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 75

Özet

Meyve ve sebze hastalıklarının gıda güvenliği ve sürdürülebilir tarım pratikleri açısından kritik önemi bulunmaktadır. Dolayısıyla hastalıklar ürün verimini düşürmekte, kaliteyi azaltmakta ve böylece küresel gıda arzını tehdit etmektedir. Bu hastalıklar aynı zamanda biyoçeşitliliği de olumsuz etkilemekte, ekosistem dengesini bozmakta ve çiftçilerin geçim kaynaklarını zayıflatmaktadır. Bu çalışmada, derin öğrenme teknikleri kullanılarak meyve ve sebzelerde görülen hastalıkların tespiti yapılmıştır. Bu araştırma kapsamında 12 sınıfa ait 2907 adet RGB görüntüden çevrimiçi bir veri seti elde edilmiştir. Her sınıf için veri genişletme yöntemi ile veri seti 2907'den 17442'e kadar çıkarılmıştır. Meyve ve sebzelerdeki çeşitli hastalıkların tespiti için 10 katmanlı evrişimli derin ağ modeli oluşturulmuş ve ön eğitimli derin ağ mimarileri ( InceptionV3 ve ResNet50) kullanılmıştır. Elde edilen sonuçlar, en başarılı yöntemleri belirlemek için zaman ve başarı oranı açısından karşılaştırılmıştır. Sağlanan analizlerin sonuçları ayrıca tasarlanan bu gerçek zamanlı sistem ile meyve ve sebzelerde hastalık görüntülerini tespit etme ve tahminlerini bilgisayar ekranına aktarmak için gerçekleştirilmiştir.

Özet (Çeviri)

Fruit and vegetable diseases have critical importance in terms of food safety and sustainable agricultural practices. Therefore, diseases reduce crop yields, reduce quality and thus threaten the global food supply. These diseases also negatively affect biodiversity, disrupt ecosystem balance and weaken farmers' livelihoods. In this study, the diseases seen in fruits and vegetables were determined by using deep learning techniques.Within the scope of this research, an online data set was obtained from 2907 RGB images belonging to 12 classes. The data set was increased from 2907 to 17442 with the data augumentıon method for each class.For the detection of various diseases in fruits and vegetables, a 10-layer convolutional deep network model was created and pre education deep network architectures (InceptionV3 and ResNet50) were employed. The obtained results were compared in terms of time and success rate to determine the most successful methods. The results of the analyzes provided were also carried out with this designed real-time system to detect disease images in fruits and vegetables and transfer their predictions to the computer screen. Keywords

Benzer Tezler

  1. Zeytin pamuklu biti ve zeytin güvesinin kimyasal mücadelesinde görüntü işleme ve sensör tabanlı erken uyarı sisteminin entegrasyonu

    Integration of image processing and sensor-based forecastingsystem in chemical control of olive psyllid and olive moth

    MERT DEMİREL

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    ZiraatBursa Uludağ Üniversitesi

    Bitki Koruma Ana Bilim Dalı

    PROF. DR. NABİ ALPER KUMRAL

  2. Derin öğrenme teknikleri ile üzüm çeşitlerinin belirlenmesi

    Determination of grape varieties with deep learning techniques

    İSMAİL TERZİ

    Doktora

    Türkçe

    Türkçe

    2023

    ZiraatTokat Gaziosmanpaşa Üniversitesi

    Biyosistem Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHMET METİN ÖZGÜVEN

    DOÇ. DR. ADEM YAĞCI

  3. Derin öğrenme ve dijital görüntü işleme teknikleri kullanılarak Kahramanmaraş'ta yetişen ceviz türlerinin özellik tespiti ve sınıflandırılması

    Feature detection and classification of walnut species growing in Kahramanmaraş by using deep learning and digital image processing techniques

    EYÜP ŞEKERLİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik MühendisliğiKahramanmaraş Sütçü İmam Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ERDAL KILIÇ

  4. İş süreçlerinde insan görüsünü derin öğrenme ile destekleme

    Supporting human vision with deep learning on business process

    ALTUĞ YİĞİT

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTrakya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. CEM TAŞKIN

  5. Uzaktan algılama ve görüntü işleme tarıma uygulanması

    Remote sensing and image processing application to agriculture

    AHMET YAŞAR BALKESEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Fizik ve Fizik Mühendisliğiİnönü Üniversitesi

    Fizik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TUNCAY ÖZDEMİR