Geri Dön

Dökme yük gemisi için rüzgar kanat yelkenli ve güneş enerjili sistem tasarımı ve analizi

Wind wing sail and solar powered system design and analysis for bulk cargo ship

  1. Tez No: 863626
  2. Yazar: CİHAN EMRE ŞAHİN
  3. Danışmanlar: DR. ÖĞR. ÜYESİ MURAT EMRE DEMİR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Denizcilik, Enerji, Gemi Mühendisliği, Marine, Energy, Marine Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Gemi İnşaatı ve Gemi Makineleri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Gemi İnşaatı ve Gemi Makineleri Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 81

Özet

Küresel bir sorun haline gelen sera gazı etkilerinin önlenmesi için Uluslararası Denizcilik Örgütü'nün (IMO) yayınladığı hedefler çerçevesinde, 2050'ye kadar 0 emisyona geçiş yolunda önemli adımlardan biri olarak görülen rüzgâr enerjisinin gemilerdeki kullanımının bir yansıması da, katı kanat yelkenleridir. Deniz taşımacılığında rüzgâr enerjisiyle çalışan katı kanat yelkenlerin kullanılması, yenilenebilir enerji kaynaklarının kullanımını ve çevresel sürdürülebilirliği destekleyen önemli bir stratejiyi temsil etmektedir. Katı kanat yelkenlerinin gemiler üzerindeki etkisini değerlendirmek için yelkenlerin aerodinamiğini doğru hesaplamak önemlidir. Ancak yelkenlerle ilgili araştırmaların çoğu, yatay ve dikey olarak değişen doğal rüzgârdan ziyade sabit rüzgâr koşullarına dayanmaktadır. Bu çalışmada, İstanbul Kalamış'tan Norveç'in Herdla-Utsiden'ine kadar toplam 45 geçiş noktası içeren rotayı kapsayan, Türkiye'den Norveç'e giden, SSI Excellent isimli gemiye, 120 metrekarelik NACA0012 kanadının sağladığı itme kuvveti araştırılmaktadır. Ayrıca bu kanatların 2 yüzeyinin toplam alanı olan 240 metrekarelik alanlara da esnek güneş panelleri koyarak enerji üretilmesi amaçlanmaktadır. Toplamda gemiye 2880 metrekarelik bir alanda güneş paneli uygulamasının geminin emisyon ve yakıt tüketimi açısından faydaları araştırılacaktır. Her geçiş noktasında yıllık ortalama rüzgâr verileri ve güneş enerjisi verileri toplanmıştır. Kanadın oluşturduğu kaldırma ve sürükleme kuvvetleri kuvvete neden olur. Bu kuvvetin gemi yönündeki bileşeni doğrudan gemiye itme gücü sağlar ve hesaplamalarımız için etkin kuvvet görevi görür. Gemiye dik olan kuvvet ise gemiye sürüklenme kuvveti sağlar. Hesaplama sonuçlarına göre bu kuvvet değerlerinin çok düşük olduğu görülmüş ve sürüklenme kuvveti etkileri ihmal edilmiştir (IMO'nun yayınladığı kılavuzlarda da ihmal edilmektedir). Yıllık ortalama doğal rüzgâr verilerine dayanan bulgular, doğal ortalama rüzgâr koşullarıyla karşılaştırıldığında maksimum itme enerjisinin Şubat ve Aralık aylarında oluştuğunu ve 30781,55 kWh'e ulaştığını, en düşük enerji üretiminin ise 22,58 kWh ile Eylül ayında kaydedildiğini ortaya koyulmaktadır. Bu veriler 1 kanat için geçerlidir. Gemiye toplamda 12 kanat konulacağı düşünüldüğünde üretilecek toplam enerji en yüksek Şubat ve Aralık ayları için 369378,66 kWh, en düşük Eylül ayı için 271044 kWh olmaktadır. Güneş panellerinden ise yapılan hesaplamalar aralık ayı için hesaplanmıştır. Aralık ayına göre; 2880 metrekarelik güneş paneli alanı ile, toplamda üretilebilecek enerji miktarı 18864 kWh'dir. Bu sonuçlara göre rüzgâr kanatlarının geminin ana makine sevk gücüne katkısı %19,31'dir. Güneş panellerinin emisyona katkısı rüzgâr kanatlarının emisyona katkısına göre çok daha düşük kalmaktadır. Güneş panellerinden gelen eneri ile emisyon değerleri yaklaşık %1,25 düşmektedir.

Özet (Çeviri)

Solid wing sails are a reflection of the use of wind energy on ships, which is seen as one of the important steps towards transition to 0 emissions by 2050, within the framework of the targets published by the International Maritime Organization (IMO) to prevent greenhouse gas effects, which have become a global problem. The use of wind-powered solid wing sails in maritime transportation represents an important strategy that supports the use of renewable energy sources and environmental sustainability. Within the scope of these strategies, wind and solar energy technologies, which have been around for years but have been ignored due to their emission impacts, are gaining great importance. For this study, three separate wind-assisted propulsion systems were examined. First, kite sail technology was researched. This technology was first examined by Shenzle, who examined the advantages of not having low wind conditions and its disadvantages in onshore wind conditions. It is basically designed to provide propulsion to the ship with a kite sail attached to the ship. It is an advantageous technology in terms of using high wind speeds because it works at high altitudes and also does not take up any space on the deck. However, it gains functionality at angles where the wind is in one direction and in the direction of the ship from stern to forward. This can be seen as a disadvantage that significantly narrows the conditions of use. Another technology is the“Flettner Rotor”technology. Although this technology is considered a new development, its first use dates back to the 1920s. The name of this technology, developed by Anton Flettner and first applied to the ship named“Buckau”, comes from its developer, Anton Flettner. At that time, it remained an ignored technology for a long time due to low fuel costs and high initial investment costs. It came to the fore again in the 2010s when it was used again by a company called Enercon on the ship named“E-Ship 1”. The aim of reducing emissions has managed to attract attention in the process until today. It basically works with the“Magnus effect”. Finally, solid wing sail technology regarding wind energy, which is the main subject of this thesis, came to the fore in the early 1970s, with the emergence of the global oil crisis. In the last decade, technology has developed rapidly with new guidelines and rules introduced to reduce emission impacts. Although various studies were carried out around the world from the 1970s to 1986, its first application was used on a 3000-ton cargo ship named“MV Ashington”in 1986 and it was shown that it would save fuel between 15% and 25% on average. In this technology, it is important to correctly calculate the aerodynamics of sails to evaluate their impact on ships. However, most research on sails is based on steady wind conditions rather than natural wind varying horizontally and vertically. The wind effects to be examined in this study are based on natural wind data. The results obtained from natural wind data provide more accurate results in terms of evaluating the route to be taken. It is anticipated that this thesis study will contribute to the literature with the amounts of energy savings and emission savings that can be achieved by using real wind and solar data and real ship data on a specific route. The technology examined next is solar energy technology, which will affect the ship not directly as propulsion energy, but by reducing the energy that the generator must provide. Solar panels, as a device that converts sunlight into electrical energy, emerged in 1839 when French physicist Edmond Becquerel placed a liquid between two different metal plates and produced electric current in sunlight. In the 1870s, Willoughby Smith, W. G. Adams and R. E. Day discovered the photovoltaic effect in the element selenium. In 1883, Charles Fritts coated a thin layer of gold on a plate created with this element and produced the first solar panel cell in history. The efficiency of this panel cell was calculated as 1-2%, but it pioneered subsequent developments by truly proving that electricity could be produced in this way. In 1954, Daryl Chapin, Calvin Fuller and Gerald Pearson at Bell Laboratories invented the single-crystal silicon solar cell with 6% efficiency. This cell was developed for use in spacecraft and played an important role in the popularization of solar cells. The oil crisis in 1973 increased interest in solar cells. During this period, significant advances were made in the efficiency and production of solar cells. In the 1980s, solar cells began to be used in homes and businesses. In the 2000s, the efficiency of solar cells was observed to increase up to 20%. During this period, solar energy has become the fastest growing field among renewable energy sources. Today, solar cells are used in a variety of applications, including homes, businesses, power grids and spacecraft. As the efficiency and cost of solar cells increase, solar energy will become more widespread and will play an important role in clean energy production. In this thesis, a route containing a total of 45 checkpoints was selected from Kalamış, Istanbul to Herdla-Utsiden, Norway. The reason for choosing this route is the increasing Turkey-Norway trade volume, especially in the maritime field, in recent years. It was thought that the ship named SSI Excellent going from Turkey to Norway would be used for the 45 selected checkpoints in total. The purpose of using this ship is because the energy design index value set by IMO is below the required value. For this reason, reducing emission values becomes important. In addition, it is an advantage that this ship, with an overall length of 229 meters, is a dry cargo ship. The reason for this is that the hatch coaming spaces and deck areas are wide and suitable for placing wind blades. It is planned to install 12 wind blades on the ship, each of 120 square meters. It will have a total wing area of 1440 square meters. It is planned to distribute these wings as 6 on the port side and 6 on the starboard side in order not to block each other's winds. NACA0012 airfoil was chosen for the airfoils. The reason why this wing was chosen is because it is the most frequently encountered wing in the literature. It is obvious that if a more efficient wing is obtained through an optimization study on this wing, higher efficiency results will be obtained than the results in this thesis. As a first step, the thrust force to be obtained from this solid wing sail is investigated. In addition, it is planned to generate energy by placing flexible solar panels in areas of 240 square meters, which is the total area of the two surfaces of these wings. In total, the benefits of applying solar panels to the ship in an area of 2880 square meters in terms of emissions and fuel consumption of the ship will be investigated. Annual average wind data and solar energy data were collected at each transit point of the ship. The lift and drag forces created by the wing cause thrust and drag forces on the ship. The ship's direction component of the forces generated by the wing directly provides thrust to the ship and serves as the effective force for the calculations. The force created by the wing perpendicular to the ship creates a drag force on the ship. According to the calculation results, these force values were found to be very low and the drag force effects were neglected (they are also neglected in the guidelines published by IMO). Findings based on annual average natural wind data show that the maximum thrust energy compared to natural average wind conditions occurs in February and December and reaches 30781.55 kWh. It is revealed that the lowest energy production was recorded in September with 22.58 kWh. This data is the thrust energy created by only one wing. Considering that a total of 12 wings will be placed on the ship, the total energy to be produced is calculated to be 369378.66 kWh, the highest for the months of February and December. It was recorded that the lowest energy production was for September with 271044 kWh. Calculations made from solar panels are calculated only for December within the scope of this thesis. The reason for this is that the month in which wind calculations are explained in detail in the thesis is December, which is the month in which the highest wind energy is produced. With a total solar panel area of 2880 square meters this month, the amount of energy that can be produced is 18864 kWh. According to these results, it was seen that the contribution of wind blades to the ship's main engine propulsion power was 19.31%. The contribution of solar panels to emissions is much lower than the contribution of wind blades to emissions. With the energy coming from solar panels, emission values decrease by approximately 1.25%. Although this decrease may seem small, it is important because solar panels do not provide energy as direct impulse energy and reduce generator loads. The reason for this is that, depending on the changing sailing conditions during the cruise, when the ships cannot meet the increasing hotel load needs from a single generator; This is due to the need to run backup generators. Although solar panels directly reduce emissions, they are considered to be an important technology to reduce the transition to backup generators.

Benzer Tezler

  1. Theoretical application analysis of a wind assisted propulsion system (WAPS) 'rotor sails' on the bulk carrier

    Rüzgar destekli tahrik sistemlerinden (WAPS) 'rotor sail''in dökme yük gemisinde teorik uygulama analizi

    ALTEMUR GÜLEÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Denizcilikİstanbul Teknik Üniversitesi

    Deniz Ulaştırma Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TANZER SATIR

  2. A hardware in the loop simulator development for wind energy conversion systems

    Rüzgar enerjisi dönüşümü sistemleri için donanım içinde yazılım sistemi geliştirilmesi

    SIAMAK POURKEIVANNOUR

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. HULUSİ BÜLENT ERTAN

  3. Dökme yük gemilerindeki denizcilerin gözünden gemide çalışma, yaşam ve mekan: Etnografik bir inceleme

    Work, life and space on bulk carrier ships through the eyes of seafarers: An ethnographic study

    ÇAĞATAY EDGÜCAN ŞAHİN

    Doktora

    Türkçe

    Türkçe

    2023

    AntropolojiAnkara Üniversitesi

    Antropoloji Ana Bilim Dalı

    PROF. DR. MERYEM BULUT

  4. Techno-economic analyzes of ballast treatment systems for aged midsize tonnage bulkcarriers

    İleriki yaşlarında orta tonajlı dökme yük gemileri için balast ıslah sistemlerinin tekno-ekonomik analizleri

    GÖZDE TURAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Denizcilikİstanbul Teknik Üniversitesi

    Deniz Ulaştırma Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ PELİN BOLAT

  5. Dökme yük ve petrol gemilerindeki kapalı ve sınırlandırılmış mahallerde oluşabilecek iş kazalarının risk analizi

    Risk analysis of occupational accidents in confined and enlosed spaces on bulk carrier and oil tankers

    ZELİHA OYA YILMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    DenizcilikGazi Üniversitesi

    Kazaların Çevresel ve Teknik Araştırması Ana Bilim Dalı

    PROF. DR. CAN ELMAR BALAS