Geri Dön

Tumor detection in breast cancer histopathological images using convolutional neural networks

Meme kanseri histopatoloji görüntülerinde evrişimsel sinir ağları kullanarak tümör tespiti

  1. Tez No: 874083
  2. Yazar: ZEKİ ŞAHBAZ
  3. Danışmanlar: DR. ÖĞR. ÜYESİ BEKİR HAKAN AKSEBZECİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: İngilizce
  9. Üniversite: Abdullah Gül Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 48

Özet

Meme kanseri, dünya genelinde kadınlar arasında görülen en yaygın kanser türlerinden biridir. Erken teşhis konulduğu zaman, hayatta kalma ve tedavi ihtimali arttığı için tanı metodolojilerindeki gelişmeler önemlidir. Bu çalışma, derin öğrenme ve görüntü işleme tekniklerini kullanarak meme kanseri histopatoloji görüntülerindeki tümör hücrelerinin tespitinde iyileştirme yapmayı hedeflemektedir. Özellikle tümör çevresini kapsayan kutuların boyutu, aynı andaki toplu iş sayısı, optimizasyon algoritmaları ve öğrenme hızı ile ağırlık azaltma dahil olmak üzere hiperparametrelerde farklı değerler sınanmaktadır. Bu değişkenler ile Faster R-CNN modelinin iyileştirilmesine odaklanılmaktadır. Meme Kanseri Histopatoloji Anotasyon ve Tanı (BreCaHAD) veri setini kullanarak çeşitli parametrelerde geniş bir analiz yapılmıştır. Analiz sonucunda, model performansını artıran en iyi parametreler belirlenerek; hassasiyet, geri çağırma ve F-skoru gibi önemli metriklerde iyileşme sağlanmıştır. Meme kanseri histopatoloji görüntülerinde tümör tespiti doğruluğunu etkileyen kritik faktörleri kapsamlı bir şekilde inceleyen bu çalışma, tıbbi görüntü analizi alanına önemli katkılar sunmaktadır. Elde edilen sonuçlar, daha güvenilir ve doğru tanıya katkıda bulunabilecek yeni araştırma alanları ve geliştirme yolları için sağlam bir temel oluşturmaktadır.

Özet (Çeviri)

Breast cancer is one of the most common cancer types among women worldwide. Early detection significantly increases the chances of survival and effective treatment, making advancements in diagnostic methodologies crucial. This study aims to improve the detection of tumor cells in breast cancer histopathology images using deep learning and image processing techniques. Significant modifications have been made to the hyperparameters, including the tumor bounding box size, batch size, optimization algorithms, learning rate, and weight decay. These changes focus on determining the best parameters of the Faster R-CNN model. A comprehensive analysis of different parameters was conducted using the Breast Cancer Histopathological Annotation and Diagnosis (BreCaHAD) dataset. The analysis identified the best settings for model performance, shows by improvements in precision, recall, and F-score. Our research contributes to the field of medical image analysis by identifying critical factors that affect the accuracy of tumor detection, contributing to the development of more accurate diagnostic tools.

Benzer Tezler

  1. Farklı derin öğrenme modelleri kullanarak histopatalojik görüntülerden meme tümörlerinin sınıflandırılmasında yeni yaklaşımlar

    New approaches in classification of breast tumors from histopathological images using different deep learning models

    SEMA NIZAM ABDULGHANI

    Doktora

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiSelçuk Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SEYFETTİN SİNAN GÜLTEKİN

  2. Histopatolojik görüntülerde tümör bölütlenmesi

    Tumor segmentation in histopathological images

    ZEHRA BOZDAĞ

    Doktora

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUHAMMED FATİH TALU

  3. Nuclei segmentation and classification in histopathology images using deep neural networks

    Derin sinir ağları kullanarak histopatoloji görüntülerinde çekirdek segmentasyonu ve sınıflandırması

    MUHARREMCAN GÜLYE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ FERİŞTAH DALKILIÇ

  4. Breast tumor segmentation and classification on histopathological images using machine learning

    Makine öğrenmeyi kullanarak histopatolojik görüntüler üzerinden meme tümörünün bölümlendirilmesi ve sınıflandırılması

    ZEYAD ABDALKAREEM KHALAF KHALAF

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ NEHAD T.A RAMAHA