Derin öğrenme modellerine dayalı mamografi görüntülerinin sınıflandırılması
Classification of mammography images based on deep learning models
- Tez No: 884018
- Danışmanlar: DOÇ. DR. EFTAL ŞEHİRLİ
- Tez Türü: Yüksek Lisans
- Konular: Biyomühendislik, Bioengineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2024
- Dil: Türkçe
- Üniversite: Karabük Üniversitesi
- Enstitü: Lisansüstü Eğitim Enstitüsü
- Ana Bilim Dalı: Biyomedikal Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 150
Özet
Meme kanserinin yaygınlığı ve ölüm potansiyeli göz önüne alındığında, erken teşhisin hasta sonuçlarını ve hayatta kalma oranlarını iyileştirmek için oldukça önemli olduğu görülmektedir. Bu tez, meme kanserinin tespit etme sürecini iyileştirmek için, mamografi görüntülerinin sınıflandırılması için derin öğrenme modellerinin uygulanmasını araştırmaktadır. Tezin amacı, mamografi görüntüleri üzerinde kitle tespit etmek ve tespit edilen kitlelerin sınıflandırması için otomatik bir sistem oluşturmak üzere YOLO (You Only Look Once) ve evrişimli sinir ağları (CNN) kullanarak hibrit bir yaklaşım önermektir. INbreast veri setindeki 410 görüntüden 107 kitle içeren görüntü ve 62 sağlıklı görüntü kullanılmıştır. Seçilen kitle görüntüleri, iyi huylu, şüpheli ve kötü huylu kitlelerin tüm işaretlenmiş (annotated) görüntülerini temsil etmektedir. Veri artırma teknikleri kullanılarak, model esnekliğini artırmak ve daha geniş bir varyans aralığından öğrenmek için, seçilen kitle ve normal görüntülerin sayısı sırasıyla 1183 ve 1116'ya çıkarılmıştır. Bu tezde, YOLOv7 nesne algılama algoritması, %95.9'luk Ortalama Hassasiyet (mAP) ile olası kitlelerin tespit edilmesini içeren algılama aşamasında YOLOv5'i geride bırakmıştır. Tespitin ardından, ön eğitimli CNN modelleri tespit edilen kitleleri iyi huylu, kötü huylu ve şüpheli olarak sınıflandırmıştır. ResNet50 %91.7 doğruluğu ile en iyi performans göstermiştir. Kitle tespiti için YOLOv7 ve sınıflandırma için ön eğitimli CNN'lerin kombinasyonu, önde gelen araştırmalarla karşılaştırılabilir yüksek doğruluk üreterek, radyologların meme kanserini erken ve doğru bir şekilde teşhis etmelerine yardımcı olma potansiyelini göstermektedir.
Özet (Çeviri)
Given the prevalence and potential mortality of breast cancer, early diagnosis is crucial to improve patient outcomes and survival rates. This thesis investigates the application of deep learning models for the classification of mammography images to improve the detection process of breast cancer. The aim of the thesis is to propose a hybrid approach using YOLO (You Only Look Once) and convolutional neural networks (CNN) to create an automated system for mass detection and classification of detected masses on mammography images. Out of 410 images in the INbreast dataset, 107 images containing masses and 62 normal images were used. The selected mass images represent all annotated images of benign, suspicious and malignant masses. Using data augmentation techniques, the number of selected mass and normal images was increased to 1183 and 1116, respectively, in order to increase the model flexibility and to learn from a wider range of variances. In this thesis, the YOLOv7 object detection algorithm outperforms YOLOv5 in the detection phase, which involves the detection of possible masses with a mean average precision (mAP) of 95.9%. After detection, the pre-trained CNN models were used to classify the detected masses as benign, malignant and suspicious. ResNet50 showed the best performance in this phase with 91.7% accuracy. The combination of YOLOv7 for mass detection and pre-trained CNNs for classification produced high accuracy comparable to leading research, demonstrating the potential to assist radiologists to diagnosing breast cancer early and accurately.
Benzer Tezler
- Segmentation of colon nuclei images using deep learning
Kalın bağırsak hücre görüntülerinin derin öğrenme kullanılarak bölütlenmesi
ATAKAN ÖZKAN
Yüksek Lisans
İngilizce
2025
Biyomühendislikİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ENDER METE EKŞİOĞLU
- Derin öğrenme yaklaşımları ile meme kanseri tespiti ve sınıflandırması
Breast cancer detection and classification with deep learning approaches
BÜŞRA KÜBRA KARACA AYDEMİR
Doktora
Türkçe
2025
Bilim ve TeknolojiBaşkent ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
PROF. DR. BERNA DENGİZ
PROF. DR. ZİYA TELATAR
- DDOS attack by botnet infected IoT devices detection based on deep learning models
Derın öğrenme modellerıne dayalı botnet vırüslü IoT cıhazlarının algılanması ıle DDOS saldırısı
OMER ADIL HUSSEIN AL MARSOOMI
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş ÜniversitesiBilgi Teknolojileri Ana Bilim Dalı
YRD. DOÇ. DR. ABDULLAH ABDU IBRAHIM
- Univariate time series methodology for wind energy based on hybrid deep learning models
Rüzgar enerjisi için hibrit derin öğrenme modellerine dayalı tek değişkenli zaman serisi metodolojisi
ANASTASYA ÖZTEKİN
Yüksek Lisans
İngilizce
2024
Endüstri ve Endüstri MühendisliğiAtılım ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. KAMİL DEMİRBERK ÜNLÜ
- Nesne tespiti ve görüntü sınıflandırmada derin öğrenme modellerine dayalı yeni yöntemlerin geliştirilmesi
Development of novel deep learning-based methods for object detection and image classification
MALIKI MOUSTAPHA
Doktora
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. CELAL ÖZTÜRK