Geri Dön

Yapay sinir ağları ve bukalemun optimizasyon algoritması ile dağıtık enerji kaynaklarında tekno-ekonomik ve çevresel faydalar sağlayan pratik radyal dağıtım besleyici optimizasyonu

Practical radial distribution feeder for techno-economic and environmental benefits in distributed energy resources with artificial neural network and chameleon optimization algorithm

  1. Tez No: 890577
  2. Yazar: JEMAA A. BOJOD
  3. Danışmanlar: DR. ÖĞR. ÜYESİ BİLGEHAN ERKAL
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: Karabük Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 90

Özet

Dağıtılmış enerji kaynakları (DER'ler), yük merkezlerine yakın yük talebini karşılamak için daha iyi bir seçimdir. Optimum DER yerleşimi ve DER değerleri, güç kaybının azaltılmasına, voltaj profilinin iyileştirilmesine, çevre dostu olmasına, güvenilirliğe ve sistem değişikliklerinin ertelenmesine yol açar. Bu çalışma, güç kaybını azaltmak, voltaj seviyelerini düzenlemek ve öngörülemeyen yük talebi altında maliyet ve emisyonları azaltmak amacıyla yenilenebilir enerji kaynaklarının ve elektrikli araçların dağıtım besleyicilerindeki en iyi entegrasyonunu analiz etmek için yapay sinir ağlarını ve Bukalemun Optimizasyon Algoritmasını kullanmaktadır. Bu çalışmada modellerin üretilen çıkış güçleri güneş fotovoltaik üretim sistemleri ve rüzgar türbini üretim sistemleri ile karşılaştırılmıştır. Sonuç olarak, toplam aktif güç kaybını azaltırken aynı zamanda toplam maliyeti ve emisyon üretimini de azaltmak için çeşitli hedefleri olan bir uygunluk fonksiyonu geliştirilmiştir. Çalışma, EV şarj/deşarj davranışının dağıtım sistemi üzerindeki etkisini dikkate aldı. Önerilen metodolojiyi test etmek için fiderlerdeki 28 buses kırsal dağıtım ağı kullanılmıştır. Sayısal sonuçların son analizi, Yapay Sinir Ağı ve Bukalemun Optimizasyon Algoritmalarının güç kaybı (440,94 kw) ve ortalama gerçek güç alımı (2224 kw) açısından daha iyi performans gösterdiğini ancak bu parametrelerin diğer optimizasyon algoritmalarını desteklemediğini gösterdi. Bu, önerilen stratejinin hem uygulanabilir hem de etkili olduğunu gösterdi.

Özet (Çeviri)

Distributed energy resources (DERs) are a better choice to meet load demand close to load centers. Optimal DER placement and DER ratings lead to power loss minimization, voltage profile improvement, environmental sustainability, dependability, and deferment of system changes. This study uses artificial neural networks and the Chameleon Optimization Algorithm to analyze the best optimal assimilation of renewable energy sources and electric vehicles in the distribution infrastructure feeders to reduce power loss, regulate voltage levels, and decrease the cost and emissions under unpredictable load demand. In this investigation, the generated output power of the models is compared to solar photovoltaic generation systems and wind turbine generation systems. As a result, a fitness function with several objectives has been developed to reduce total active power loss while also reducing total cost and emissions generation. The study took into account the effect of EV charging/discharging behavior on the distribution network. The 28-bus rural distribution network in feeders is used to test the suggested methodology. Final analysis of the numerical outcomes revealed that the Artificial Neural Network and Chameleon Optimization Algorithms outperformed in terms of power loss (440.94 kw) and average purchase of real power (2224 kw), but these parameters do not favor the other optimization algorithms. This showed that the proposed strategy is both viable and effective.

Benzer Tezler

  1. A Comparative study of artificial neural network and the alternative statistical methods

    Yapay sinir ağları ve alternatif istatistik metodlarının karşılaştırmalı çalışması

    FERAY ADIGÜZEL

    Yüksek Lisans

    İngilizce

    İngilizce

    1999

    İstatistikOrta Doğu Teknik Üniversitesi

    İstatistik Ana Bilim Dalı

    YRD. DOÇ. DR. QAMARUL İSLAM

  2. Exchange rate forecasting: Box-Jenkins method vs. neural networks

    Yapay sinir ağları ve Box-Jenkins modeli kullanarak döviz kur tahmini

    ALPER ÜNGÖR

    Yüksek Lisans

    İngilizce

    İngilizce

    1998

    İşletmeOrta Doğu Teknik Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. ALİ YAZICI

  3. Flight maneuver classification using artificial neural networks

    Yapay sinir ağları ile uçuş manevrası sınıflandırma

    FİKRİCAN PUSAT

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET ÖNDER EFE

  4. Yapay sinir ağları ve K-MEANS kullanarak sınır değerlerine göre yazılım efor tahmini

    Software effort estimation with boundaries using artificial neural networks and K-MEANS

    ÖMER FARUK SARAÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NEVCİHAN DURU

  5. Yapay sinir ağları ve bert dil modeli kullanılarak zaman bazlı duygu analizi: whatsapp yeni gizlilik sözleşmesine yönelik yorumların araştırılması

    Time based sentiment analysis using artificial neural networks and bert language model: Exploring comments on whatsapp's new privacy policy

    KAZIM TİBET SAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    Yönetim Bilişim Sistemleri Ana Bilim Dalı

    YRD. DOÇ. DR. KUTAN KORUYAN