Analysis and debugging of code samples using large language models
Büyük dil modellerini kullanarak kod örneklerinin analizi ve hata ayıklama
- Tez No: 894418
- Danışmanlar: Assist. Prof. Dr. ARDA SEZEN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2024
- Dil: İngilizce
- Üniversite: Atılım Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Bilimleri Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Bilimleri Bilim Dalı
- Sayfa Sayısı: 91
Özet
Kod hata ayıklama ve analizi zorlu bir görevdir. Özellikle otomatik olmayan hata yerelleştirme görevi kaynak tüketir ve hatanın kök nedenini belirlemek için önemli bir çaba gerektirir. Bu tezde, büyük dil modellerini kullanarak testsiz, otomatik satır seviyesi hata yerelleştirme incelenmiştir. Çalışmada, çift yönlü dikkat tabanlı mekanizma ve kod-anlama için önceden eğitilmiş büyük dil modelleri kullanıldı. Aynı zamanda büyük dil modellerinde girilen kodun satır seviyesi hatalılık puanlarını çıktı olarak vermesi için adaptör ayarlaması yapılmıştır. Ortaya çıkan model FLICoder olarak adlandırıldı. Farklı ayarlarla birden çok FLICoder modeli eğitildi ve mimarisinin çeşitli yönlerinin genel performans üzerindeki etkisi incelendi. FLICoder modeli ayrıca temel LLM tabanlı hata yerelleştirme çözümü ile karşılaştırılmış olup, FLICoder modelinin %25 - %52 iyileştirme gösterdiği tespit edilmiştir.
Özet (Çeviri)
Code debugging and analysis is a challenging task. Specially the task of manual fault localization (FL) is resource-consuming and requires significant effort to identify the root cause of the fault. In this thesis, test-free, automatic line-level fault localization using large language models is explored. Different bidirectional attention-based code-understanding pre-trained large language models (CLMs) are used and adapter tuning is performed to fine-tune the CLM to output line-level faultiness scores of the input code. The resulting model is called FLICoder. Multiple FLICoder models with different settings are trained and the impact of various aspects of its architecture on its overall performance is investigated. The FLICoder model is also compared with the baseline LLM-based FL solution. The baseline is outperformed by FLICoder by 25% - 52%.
Benzer Tezler
- Emniyet kritik yazılım test edilebilirliğinin iyileştirilmesi
Improving testability of safety-critical software
ONUR ÖZÇELİK
Yüksek Lisans
Türkçe
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. DENİZ TURGAY ALTILAR
- Paralel işaret işleme sistemi ve bir uygulama
A Parallel signal processing system and an application
FATİH KURUGÖLLÜ
Yüksek Lisans
Türkçe
1994
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
PROF. DR. A. EMRE HARMANCI
- Yapay zekanın marka söylemini belirleme gücü
The defining power of the artificial intelligence on brand discourse
GİZEM TEMİR
Yüksek Lisans
Türkçe
2024
Halkla İlişkilerTrabzon ÜniversitesiHalkla İlişkiler ve Reklamcılık Ana Bilim Dalı
DOÇ. DR. EMRE ŞABAN ASLAN
- Imaging and evaluating the memory access for malware
Zararlı yazılımlar için bellek erişimlerinin görüntülenmesi ve değerlendirilmesi
ÇAĞATAY YÜCEL
Doktora
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYaşar ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. AHMET HASAN KOLTUKSUZ
- Tersine mühendislik yöntemleri ve bilgisayar uygulamaları analizi
Reverse engineering methods and computer applications analysis
GÜNEY UĞURLU
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBaşkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ KORAY AÇICI