Geri Dön

Multi–label emotion classification with fine-tuned bert andcontrastive learning

İnce ayarlı bert ve ile çok etiketli duygu sınıflandırmasıkarşılaştırmalı öğrenme

  1. Tez No: 916258
  2. Yazar: AMMARA NASEEM KHAN
  3. Danışmanlar: Assoc. Prof. Dr. MEHMET NAFİZ AYDIN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Yönetim Bilişim Sistemleri, Management Information Systems
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: İngilizce
  9. Üniversite: Kadir Has Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Yönetim Bilişim Sistemleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 52

Özet

Duygular insan etkileşiminin temelini oluşturmakta ve bunların sınıflandırılması ve tanınması doğal dil işlemede (NLP). önemli zorluklar yaratmaktadır. Bu araştırma, metinsel verilerde çok etiketli duygu sınıflandırması için karşılaştırmalı öğrenme ile BERT tabanlı örneklenmemiş (uncased) modellerin ince ayarının etkinliğini değerlendirmektedir. SemEval 2024 Görev 3, Alt Görev 1 için sağlanan, Ekman'ın temel duygularını (Sevinç, Üzüntü, Öfke, Korku, İğrenme ve Şaşkınlık) içeren 1.374 elle işaretlemeli konuşmayı içeren durum komedisi Friends'ten alınan verileri kullanarak, ContrastiveBERT'in nüanslı duygusal durumları daha iyi yakalayıp yakalayamayacağını, sınıf dengesizliklerini ele alıp alamayacağını ve bu altı duyguyu sınıflandırmada standart BERT'ten daha iyi performans gösterip gösteremeyeceği değerlendirilmiştir. ContrastiveBERT yaklaşımı, temel BERT modeline kıyasla %9,1 daha yüksek F1 puanı, %11,3 ROC AUC artışı ve %10,17 doğruluk artışı ile önemli performans iyileştirmeleri göstermiştir. Bu araştırma, BERT'in tek bir metin parçası içerisinde birden fazla duyguyu yakalamadaki performansına ilişkin anlayışımızı geliştirmeye katkıda bulunarak, duygu analizinde daha geniş bir uygulama alanının önünü açmaktadır

Özet (Çeviri)

Emotions are fundamental to human interaction, and their classification and recognition pose significant challenges in natural language processing (NLP). This research evaluates the effectiveness of fine-tuning BERT-base uncased models with contrastive learning for multi-label emotion classification in textual data. Using data from the sitcom Friends, which includes 1,374 manually annotated conversations featuring Ekman's basic emotions—Joy, Sadness, Anger, Fear, Disgust, and Surprise—provided for SemEval 2024 Task 3, Subtask 1, we assess whether ContrastiveBERT can better capture nuanced emotional states, address class imbalances, and outperform standard BERT in classifying these six emotions. The ContrastiveBERT approach demonstrated notable performance improvements, with a 9.1% higher F1 score, 11.3% increase in ROC AUC, and a 10.17% improvement in accuracy compared to the baseline BERT model. This research contributes to enhancing our understanding of ContrastiveBERT's performance in capturing multiple emotions within a single text segment, paving the way for its broader application in emotion analysis

Benzer Tezler

  1. DA4HI: A deep learning framework for facial emotion recognition in affective systems for children with hearing impairments.

    DA4HI: İşitme engelli çocuklar için duyuşsal sistemlerde yüzdeki duyguların tanınması maksadıyla geliştirilen derin öğrenme modeli.

    CEMAL GÜRPINAR

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HATİCE KÖSE

    PROF. DR. NAFİZ ARICA

  2. Multilabel classification with neural network

    Yapay sinir ağları ile çok etiketli sınıflandırma

    SEZİN EKŞİOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilim ve TeknolojiÖzyeğin Üniversitesi

    Veri Bilimi Ana Bilim Dalı

    DOÇ. DR. OKAN ÖRSAN ÖZENER

  3. Machine learning-enabled stress detection in children using physiological signals during robot assisted therapy

    Çocuklarda makine öğrenmesi ile desteklenmiş robot ile yapılan terapi sırasında fizyolojik sinyallerle stres tespiti

    SEVGİ NUR BİLGİN AKTAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Eğitimi Ana Bilim Dalı

    PROF. DR. HATİCE KÖSE

  4. Durgun görüntülerden yüz ifadelerinin tanınması

    Facial expression recognition from static images

    BİLGE SÜHEYLA AKKOCA

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MUHİTTİN GÖKMEN

  5. Sosyal medya verileri üzerinde derin öğrenme tabanlı hibrit model kullanılarak salgın dönemi duygu analizi

    Epidemic period emotion analysis using a deep learning based hybrid model on social media data

    AYHAN AKKAYA

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHarran Üniversitesi

    Mühendislik Bilimleri Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ NAGEHAN İLHAN