Geri Dön

Li-O2 pil laboratuvar AR-GE çalışmalarının çevresel etkisi ve optimizasyonu

Environmental impact and optimisation of Li-O2 battery laboratory R&D studies

  1. Tez No: 917294
  2. Yazar: NİSAN NASIF
  3. Danışmanlar: DR. ÖĞR. ÜYESİ AHSEN AKBULUT ULUDAĞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Çevre Mühendisliği, Environmental Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 101

Özet

21. yüzyılda enerji depolama teknolojileri, artan enerji talebi ve yenilenebilir enerji kaynaklarının entegrasyonu için büyük önem kazanmıştır. Etkili enerji depolama sistemleri, güç üretim maliyetlerini düşürürken verimliliği artırır ve yenilenebilir enerji kaynaklarının daha sürdürülebilir bir şekilde kullanılmasını sağlar. Özellikle enerji arz ve talep dengesizliklerini gidermek ve elektrik şebekelerinin esnekliğini artırmak için enerji depolama kritik bir çözüm sunmaktadır. Bununla birlikte, bu teknolojilerin çevresel etkilerinin anlaşılması, malzeme geliştirme çalışmaları ve mevcut teknolojilerle ilişkilerinin değerlendirilmesiyle mümkündür. Yaşam döngüsü analizi (LCA), ürünlerin veya süreçlerin çevresel etkilerini sistematik bir şekilde değerlendirmek için kullanılan kapsamlı bir yöntemdir. Bu analiz, enerji depolama teknolojilerinde çevresel iyileştirmeler yapılmasını sağlamak için kritik bir araçtır. Ayrıca, Ar-Ge çalışmaları, malzeme seçiminden üretim süreçlerine kadar sürdürülebilir çözümler geliştirilmesine olanak tanıyarak, enerji depolama sistemlerinin çevresel etkilerinin azaltılmasında önemli bir rol oynar. Bu çalışmada, Li-O2 pil hücresinin geliştirilmesine yönelik laboratuvar çalışmalarının çevresel etkileri yaşam döngüsü analizi (LCA) yöntemiyle incelenmiştir. Ar-Ge çalışmaları ise bu teknolojilerin performansını artırmak ve çevresel etkilerini azaltmak için yenilikçi çözümler üretmede kritik bir rol oynamaktadır. Çalışma, fonkisyonel birim olarak“5 katot geliştirme”laboratuvar çalışması belirtilmiştir. Katot üretiminde kullanılan Ag0.4Mn8O16 ve NiO malzemelerinin otoklav süreçlerinden dolayı yüksek çevresel etkilere yol açtığını göstermiştir. En yüksek çevresel etkilerin kullanım aşamasında olduğu ve bu etkilerin %89'unun Küresel Isınma Potansiyeli (GWP) ile Kanserojen Toksisite Potansiyeli (HTPcancer) kategorilerinde yoğunlaştığı belirlenmiştir. Optimizasyon çalışmaları, çevresel etkileri %16 oranında azaltmayı mümkün kılmıştır. Enerji üretim yöntemlerinin çevresel etkiler üzerindeki belirgin rolü de ortaya konmuştur. Türkiye'de fosil yakıtlara dayalı enerji üretiminin GWP'yi artırdığı, Fransa'da ise nükleer enerji kullanımıyla daha düşük çevresel etkiler gözlemlendiği tespit edilmiştir. Toplam GWP, 2010.90 kg CO2-eş olarak hesaplanmıştır. Bu bulgular, enerji depolama teknolojilerinin sürdürülebilirlik ve çevresel etkilerini anlamak için önemli bilgiler sunmaktadır. LCA analizlerinde SimaPro 9.5.0.0 yazılımı ve ReCiPe 2016 Midpoint (H) V1.08 / World (2010) etki değerlendirme yöntemi kullanılmıştır. Bu yöntem, çevresel etkilerin detaylı bir şekilde analiz edilmesine olanak tanımış ve enerji depolama teknolojilerinin çevresel etkilerinin azaltılmasında değerli bir referans sağlamıştır. Çalışma, Ar-Ge ve sürdürülebilirlik çalışmaları için rehber niteliğindedir.

Özet (Çeviri)

In the 21st century, energy storage technologies have become increasingly critical due to growing energy demand and the integration of renewable energy sources. Effective energy storage systems not only reduce power generation costs but also enhance efficiency and enable the sustainable utilization of renewable energy resources. These technologies play a pivotal role in addressing energy supply demand imbalances and enhancing the flexibility of electrical grids. Moreover, understanding their environmental impacts requires the evaluation of materials development and their interrelations with existing technologies. Energy storage technologies are essential for addressing the challenges associated with balancing energy supply and demand, especially with the increasing reliance on intermittent renewable energy sources such as solar and wind. These sources, while environmentally friendly, produce energy that is not always aligned with demand, creating the need for effective storage systems. Energy storage helps smooth out fluctuations in power generation by storing excess energy when demand is low and releasing it during peak demand periods. This capability enhances grid stability, reduces the need for backup power plants, and decreases overall energy production costs. Moreover, energy storage technologies can improve energy efficiency by reducing losses associated with energy transmission and distribution. Common energy storage methods include batteries, supercapacitors, and thermal or mechanical storage systems. Batteries, such as lithium-ion and advanced options like lithium-oxygen (Li-O2) batteries, store electrical energy chemically are widely used due to their high energy density and versatility. Supercapacitors, on the other hand, provide rapid bursts of power and are ideal for applications that require quick charging and discharging. Thermal storage systems, which store heat or cold for later use, and mechanical storage, such as pumped hydro and flywheels, offer additional solutions for balancing supply and demand. Advanced systems, particularly lithium-ion and lithium-oxygen batteries, are at the forefront of energy storage due to their ability to store large amounts of energy in compact, lightweight designs, making them especially useful for electric vehicles (EVs) and mobile electronics. Li-O2 batteries, in particular, promise even higher energy densities than lithium-ion batteries, offering significant advantages for long-duration storage and large-scale renewable energy applications. These technologies are crucial for achieving a sustainable energy future, as they enable the seamless integration of renewable energy sources into power grids. By storing excess energy generated during periods of high solar or wind output, these storage systems help ensure a reliable energy supply, even when renewable generation is low, thus facilitating the transition to a greener and more resilient energy infrastructure. Lithium-oxygen (Li-O2) batteries offer several key advantages, including their exceptionally high theoretical energy density of approximately 3500 Wh/kg, which makes them ideal for energy-intensive applications. Their operation is based on relatively simple chemistry, relying on redox reactions between lithium ions and oxygen, both abundant and cost-effective resources. Furthermore, the use of atmospheric oxygen reduces dependence on limited materials, presenting a potentially sustainable energy storage solution. Developing effective catalysts and cathode materials, such as Ag0.4Mn8O16 and NiO, is critical for enhancing reaction efficiency and minimizing side reactions, though these materials are associated with high environmental impacts due to energy-intensive manufacturing processes. Additionally, the production and disposal of Li-O2 batteries pose environmental concerns, particularly due to the reliance on rare metals and autoclave processes. Another challenge is efficient oxygen management, which is essential for consistent performance but requires innovative design solutions. Addressing these issues is vital for realizing the full potential of Li-O2 batteries in sustainable energy storage. Li-O2 batteries have the potential to revolutionize energy storage, particularly in sectors where weight and energy density are critical. Research is focused on improving the stability of materials, enhancing energy efficiency, and scaling up the technology for commercial applications. Advanced computational modeling and experimental techniques are being used to optimize material selection and battery design, paving the way for sustainable solutions. The ongoing development of Li-O2 batteries, coupled with advancements in life cycle assessment (LCA) methodologies, ensures that environmental impacts are continuously evaluated and mitigated. Through targeted research and development efforts, Li-O2 batteries are expected to play a significant role in enabling a sustainable and energy efficient future. Life Cycle Assessment (LCA) is a systematic method for analyzing the environmental impacts associated with every stage of a product's life, from raw material extraction and production to usage and end-of-life disposal. By providing a detailed understanding of a product's environmental footprint, LCA enables the identification of critical stages where improvements can significantly reduce impacts. For example, in energy storage technologies, such as lithium-ion and lithium-oxygen batteries, LCA assesses factors like greenhouse gas emissions, resource depletion, energy use, and toxicity potential. This method helps researchers and manufacturers pinpoint environmentally intensive processes, optimize material usage, and implement sustainable practices. Additionally, LCA is instrumental in comparing the environmental performance of different technologies or design choices, guiding policies and innovations toward achieving global sustainability goals. Research and Development (R&D) plays a pivotal role in advancing technology by driving innovation, improving performance, and addressing existing limitations. In the context of energy storage systems, R&D efforts focus on discovering new materials, refining manufacturing processes, and optimizing system designs to enhance efficiency, reduce costs, and minimize environmental impacts. This includes exploring alternative and sustainable materials, improving energy density, increasing cycle life, and ensuring the safety and reliability of the technologies. R&D also involves developing new methodologies, such as advanced simulations and testing techniques, to better understand the behavior and performance of energy storage systems under real-world conditions. Furthermore, R&D fosters collaboration between academia, industry, and government, enabling the rapid commercialization of emerging technologies and ensuring that energy storage solutions can meet the growing global demand for sustainable and reliable energy sources. Through continuous innovation, R&D accelerates the development of next-generation energy storage technologies, which are crucial for supporting the transition to a low-carbon economy and a more sustainable energy future. (R&D) efforts complement LCA by driving innovations in material selection, production techniques, and system optimization. These efforts aim to reduce environmental burdens, enhance performance, and promote scalability, ultimately contributing to the global transition toward cleaner and more efficient energy systems. This study investigates the environmental impacts of laboratory-scale development of Li-O2 battery cells using the LCA methodology,“5 cathodes development”laboratory study was used a functional unit. R&D initiatives, particularly in the production of cathode materials such as Ag0.4Mn8O16 and NiO, have shown significant environmental impacts due to autoclave processes. The findings indicate that the highest environmental burdens occur during the usage phase, with 89% of these impacts concentrated in the Global Warming Potential (GWP) and Human Toxicity Potential (HTP, cancer) categories. Optimization efforts have demonstrated the potential to reduce environmental impacts by 16%. The role of energy generation methods in environmental outcomes is also highlighted. In Turkey, fossil fuel-based energy production contributes significantly to GWP, while in France, nuclear energy usage results in comparatively lower environmental impacts. The total GWP for the analyzed process was calculated as 2010.90 kg CO2-equivalent. These findings provide valuable insights into the sustainability and environmental considerations of energy storage technologies. The LCA analysis was conducted using the SimaPro 9.5.0.0 software and the ReCiPe 2016 Midpoint (H) V1.08 / World (2010) impact assessment method. This approach enabled a detailed evaluation of environmental impacts, serving as a valuable reference for reducing the carbon footprint of energy storage systems. The study underscores the importance of R&D and sustainability initiatives as guiding frameworks for improving energy storage technologies.

Benzer Tezler

  1. Computational investigation of battery materials using density functional theory

    Yoğunluk fonksiyonel teorisi kullanılarak pil malzemelerinin hesaplamalı incelenmesi

    DOAA AASEF AHMED AHMED

    Doktora

    İngilizce

    İngilizce

    2023

    EnerjiSakarya Üniversitesi

    Nanobilim ve Nanomühendislik Ana Bilim Dalı

    DOÇ. DR. TUĞRUL ÇETİNKAYA

  2. Ultrathin titanium dioxide coatings on carbon nanotubes for stable lithium oxygen battery cathodes

    Ultra ince titanyum dioksit kaplı dayanıklı lityum oksijen pili katotu

    FARUK OKUR

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Mühendislik Bilimleriİhsan Doğramacı Bilkent Üniversitesi

    Malzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı

    YRD. DOÇ. DR. EDA YILMAZ

  3. Investigation of molybdenum oxide as a catalyst for non-aqueous lithium oxygen batteries

    Molibdenyum oksitin katalizör malzemesi olarak su içermeyen lityum oksijen bataryalarında araştırılması

    KIVANÇ ÇOBAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Enerjiİhsan Doğramacı Bilkent Üniversitesi

    Malzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı

    YRD. DOÇ. EDA YILMAZ

  4. Kimyasal buhar biriktirme (CVD) yöntemiyle Li-iyon pillere uygun ZnO anot geliştirilmesi

    Development of novel ZnO anode for Li-ion batteries by chemical vapour deposition (CVD) method

    SAFA PARLAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2011

    Metalurji MühendisliğiSakarya Üniversitesi

    Metalurji ve Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. HATEM AKBULUT

  5. Fiziksel buhar biriktirme yöntemiyle katı hal lityum iyon pil bileşenlerinin geliştirilmesi

    Development of solid state lithium-ion battery components by physical vapor deposition method

    ENGİN ALKAN

    Doktora

    Türkçe

    Türkçe

    2023

    EnerjiSakarya Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MEHMET OĞUZ GÜLER