Geri Dön

Arıtma çamuru ve biyokütle kaynaklarının biyoyakıt üretim potansiyellerinin atıktan enerjiye incelenmesi

Investigation of biofuel production potentials oftreatment slud and biomass sources from waste toenergy

  1. Tez No: 931598
  2. Yazar: MUSTAFA YURTEN
  3. Danışmanlar: PROF. DR. SAİM ÖZDEMİR
  4. Tez Türü: Doktora
  5. Konular: Çevre Mühendisliği, Environmental Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2025
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 97

Özet

Atık su arıtma tesisi atık suları, arıtma çamuru (AÇ) ve arıtılmış su, organik madde ve enerji bitkileri için besin maddeleri açısından zengin olmaları nedeniyle yenilenebilir enerji üretimi ve karbon nötr yeşil enerji politikasının uygulanması açısından önemli kaynaklardır. Doktora çalışmamızda Sakarya İli sınırlarında olan evsel nitelikli atıksu çamuru ile onunla karışımda kullanılacak yerel biyokütle enerji kaynakları kullanılmıştır. Çamurun kül içeriği genellikle yüksek, rutubet oranı yüksek olup uçucu içerik düşük ve dolayısı ile kalorifik değeri de düşüktür. Biyokütle kaynakları arıtma çamurunun bu kötü özelliklerini iyileştirmek için ligno-selülozik kaynaklardan seçilmiştir. Çalışmada, arıtma çamurunun yanma özelliklerini iyileştirmek için arıtma çamurunun Arundo donax (AD) ve Miscanthus × giganteus (MSC) enerji bitkileri ile bunların karışımlarının biyokütle enerji potansiyeli, yakıt kalitesi ve yanma emisyon özellikleri araştırılmıştır. Çalışmamızda kullanılan bitkilerin biyokütlesi, besin kaynağı olarak atıksu arıtma tesisi atık suları kullanılarak üretilir. Çalışmamıza başlarken karışım oranları; %100 arıtma çamuru, %25 bitki-%75 arıtma çamuru, %50 bitki-%50 arıtma çamuru, %75 bitki-%25 arıtma çamuru ve % 100 bitki olarak belirlenmiştir. Her bir bitki için aynı oranlarla alınarak çalışma yapılmıştır. Yaklaşık ve nihai analiz sonuçları, bitki biyokütlesinin eklenmesinin karışımların yakıt değerini değiştirdiğini, esas olarak kül içeriğini azalttığını ve katı biyoyakıttaki uçucu madde ve karbon içeriğini arttırdığını göstermiştir. Regresyon analizi, arıtma çamuru karışımlarındaki %25, %50 ve %75 biyokütlenin ısıtma değerlerinin HHV (düşük kalorifik değer) ve LHV (düşük kalorifik değer) değerlerini doğrusal olarak arttırdığını göstermiştir. Uçucu maddedeki artış, arıtma çamurunun tutuşabilirlik indeksini önemli ölçüde iyileştirerek, her iki ürün için de %75 biyokütle karışımlarında optimum değer olan 35'e ulaşmıştır. Karışımların NOx ve SO2 emisyonlarının değerleri arıtma çamuruna göre daha düşük olduğu belirlenmiştir. Elde edilen genel sonuçlar, enerji bitkilerinden elde edilen biyokütlenin yakılması ile arıtma çamuru arasında sinerjistik bir etki olduğunu göstermektedir. Yaklaşık analiz, elemental analiz, ısıl değer, yakıt endeksleri ve gaz emisyonlarının kapsamlı bir karşılaştırması sonucunda, %50 biyokütle ve %50 arıtma çamurundan oluşan karışık yakıtların yanmayı destekleyebileceğini ve emisyonları azaltabileceğini göstermektedir. Ayrıca çalışmalar göstermiştir ki Arundo enerji bitkisi, Miscanthus enerji bitkisinden daha iyi biyoyakıt özelliklerine sahiptir. Çalışmanın geneline bakıldığında, atıksu arıtma çamuru ve arıtılmış atık su gibi besin açısından zengin atık su arıtma artıkları kullanılarak biyokütle mahsulü üretimi, atık yönetimi ve biyoenerji hammadde üretimi ve arıtma çamurunun birlikte yakılması için yeniden bitkilendirme açısından daha sürdürülebilir olabileceği düşünülmüştür.

Özet (Çeviri)

Population growth and industrialization leads to numerous problems, among which environmental issues hold a significant place. An inevitable consequence of industrialization and population growth is solid and liquid waste generation that ranks among the foremost environmental concerns. The treatment of wastewater generated both by human activities and industrial operations is of paramount importance. An outcome of wastewater treatment operations is the“sewage sludge”, which carry and concentrate pollutants. Hence, environmentally safe disposal of such solid materials is crucial. Wastewater treatment plants are crucial for renewable energy production and the implementation of carbon-neutral green energy policies, as they provide valuable resources such as wastewater, sewage sludge, treated water, organic matter, and nutrients for energy crops. The disposal of sludge can be managed through various methods, including stabilization, minimization, recycling, incineration, landfilling, composting, and agricultural use. However, the application of these methods can result in challenges such as contamination, greenhouse gas emissions, and soil degradation. Therefore, it is essential to manage sewage sludge disposal using sustainable techniques that minimize environmental impact and prevent additional ecological issues. Within this context, this doctoral study proposed to utilize domestic wastewater sludge within the Sakarya Province, in combination with local biomass energy sources for efficient sludge combustion. This approach aims to address the environmental challenges associated with sewage sludge disposal, while contributing to sustainable waste management and renewable energy production strategies. Sewage sludge is generally characterized with a high moisture content and low volatile matter, and thereby, its calorific value is lo, whereas its ash content remains high. To improve combustion of sludge, co-combustion with renewable biomass fuel sources have been proposed in order to reduce additional fuel consumption, to enhance energy balance, and to improve heat recovery. There are four main advantages of using biomass as fuel. First, the combustion rate can be improved due to the volatile, carbon, and hydrogen contributions of biomass crops. Second, the energy potential of sewage sludge can be increased with additional biomass fuel due to its low ash and high carbon and hydrogen content. Third, the ignition index, ignition performance, and flame stability can be enhanced compared to single sludge combustion. Fourth, the deficiencies related to ash from both sources can be synergistically improved by balancing the mineral composition of the raw material and biomass combustion ash. In line with these advantages, the proposed method aims to improve combustion and generate energy from sludge. Biomass sources have been selected from lignocellulosic resources to improve the poor combustion characteristics of sewage sludge. In the study, the biomass energy potential, fuel quality, and combustion emission characteristics of sewage sludge with Arundo donax (AD) and Miscanthus × giganteus (MSC) energy plants and their mixtures were investigated to improve the combustion properties of sewage sludge. Air-dried biomass samples were ground using an industrial mill to fractions with a particle size of less than 4 mm that were pelletized. By combining sun-dried sludge with Arundo straw at ratios of 0.0%, 25%, 50%, and 75%, different biomass pellets were prepared for experimental analysis and compared with 100% Arundo. In parallel, sewage sludge and Miscanthus straw mixtures were prepared at the same ratios. Subsequently, the biofuel was produced in pellet form in an industrial-scale pellet mill used in a biomass combustion plant. For each experimental test, approximately 100 kg of sample was pressed according to a predefined procedure, and the physicochemical composition and properties of the samples were determined using standard test methods such as ...(iki tane metot ismi veya kodu verebiliriz)... The fiber composition, including acid detergent fiber (ADF), acid detergent lignin (ADL), and neutral detergent fiber (NDF), which represent cellulose, hemicellulose, and lignin content, was determined using an analyzer. The moisture content was determined as the difference between sample weight before and after drying using a laboratory oven and a scale. The ash content was determined according to the ASTM D1102 protocol by calculating the mass of the residue after the sample was combusted in open crucibles in a muffle furnace at 550°C. The mass of the ash remaining in the crucible was then compared to the original mass of the sample. The volatile matter content was determined according to ASTM E870. A test sample was burned in covered crucibles at 950°C for 7 minutes. To determine the calorific values, the biomass samples were ground to 1 mm, dried in an oven at 60°C, and then dried at 105°C for 24 hours. After determining the wet weight, the higher heating value (HHV) was directly determined on a 1 g pellet in a bomb-type calorimeter (IKA, C 200) at the reference temperature (25°C). After complete combustion within 6 minutes, the calorimeter displayed calorific values of the sample in kcal kg⁻¹. A multifactorial analysis of variance (ANOVA) was used to evaluate the effects of the two main biofuels of Arundo and Miscanthus biomass on the combustion properties of sewage sludge and their interactions on the dependent variables. Additionally, regression analysis was used as an exploratory tool to assess the proportion of variability explained in the dependent variables. Biomass energy indicators were subjected to correlation analysis. The specified analyses were performed at P=0.05 using the StatsDirect statistical software package. To visualize the combustion properties of the tested biomass samples, a laboratory-scale combustion process was employed. Approximately 250 g of dry pellet samples were placed on a perforated flat grate and inserted into the combustion chamber. This comprehensive approach allowed for a detailed evaluation of the combustion characteristics and energy potential of the biomass samples. The findings provided valuable insights into whether or not biomass samples were suitable as renewable energy sources. The combination of analytical methods and statistical tools ensured a robust and reliable assessment of the biomass properties and their interactions with sewage sludge. The ignition of the biomass samples was achieved by applying hot air (approximately 350°C) from beneath the grate. Throughout the entire combustion process, the flame combustion phase was recorded using a high-resolution camera placed in front of the combustion system. Image files corresponding to different variants of the combustion process were saved as images with dimensions of 450 × 800 pixels. These images were analyzed using Image-J software to determine the combustion quality of the pellets. The Image-J program allows for the determination of dominant color intensity through RGB profile analysis of a specific area in the image. In this study, areas in the images that did not represent combustion were darkened to obtain high quality images. Equal areas were created on the image, with a specific number of pixels set to represent 1 cm, and areas of 1 cm in height were established. The average red color intensity was calculated for each of these areas. The proximate and ultimate analysis results demonstrated that the addition of plant biomass increased the fuel value of the mixtures. Primarily, the biomass addition reduced the ash content and increased the volatile matter and carbon content in the solid biofuel. This detailed analysis provided valuable insights into the combustion characteristics of the biomass samples. Simply, the impact of plant biomass on improving the fuel properties of the mixtures were clarified. The use of advanced imaging and analytical techniques ensured a comprehensive evaluation of the combustion process, and thus, contributing to the optimization of biomass utilization for energy production. Regression analysis revealed that the addition of 25%, 50%, and 75% biomass to sewage sludge mixtures linearly increased the heating values. The increase in volatile matter significantly improved the flammability index of the sewage sludge, which yielded an optimum value of 35 for both products in the 75% biomass mixtures. The NOx and SO2 emission values of the mixtures were found to be lower compared to those of pure sewage sludge. The overall results indicate a synergistic effect between the combustion of biomass derived from energy crops and sewage sludge. A comprehensive comparison of proximate analysis, elemental analysis, heating values, fuel indices, and gas emissions demonstrated that mixed fuels composed of 50% biomass and 50% sewage sludge could support combustion and reduce emissions. Additionally, studies have shown that Arundo energy plant possesses better biofuel properties than Miscanthus energy plant. In summary, production of biomass crops using nutrient-rich wastewater treatment residues, such as sewage sludge and treated wastewater, can serve for more sustainable for waste management. Such crops can be used as bioenergy feedstock and co-combustion with sewage sludge. This study concluded that mixing sewage sludge with Arundo and Miscanthus energy plants in specific ratios progressively improved the combustion parameters along with increasing biomass ratios. The most significant effect of Arundo plant was observed on ash and volatile matter content. The elemental analyses showed that significant increases in carbon (C) and hydrogen (H) were observed using the LSD test, while nitrogen (N) and sulfur (S) ratios showed a notable decrease. Although the differences were smaller, the contribution of C and H to the energy content in Arundo was higher than that of Miscanthus, likely due to Arundo's higher lignocellulosic content. The observed differences in cellulose, hemicellulose, and lignin content among the energy plants were minor and insignificant. Therefore, the higher heating value (HHV) of the plant samples significantly and similarly supported the HHV of sludge mixtures as the biomass ratio increased. The addition of energy plants to sewage sludge significantly improved fuel quality index values, including the flammability index, fuel value index, and biomass quality index. Likewise, the addition primarily reduced ash and moisture content of the mixture, while increasing its HHV. NOx and SO2 emissions in exhaust gases increased proportionally to nitrogen (N) and sulfur (S) concentrations in sewage sludge, but co-combustion with biomass reduced these emissions to within permissible standard ranges. Overall, the findings indicated that using nutrient-rich wastewater treatment residues, such as sewage sludge and treated wastewater, for biomass crop production could offer a more sustainable approach to waste management, bioenergy feedstock production, and co-combustion with sewage sludge.

Benzer Tezler

  1. Orman ürünleri atıklarının gazlaştırılması ile yakıt üretimi

    Fuel producti̇on by gasi̇fi̇cati̇on of forest waste products

    SALİH ÇAMUR

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    EnerjiGedik Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    PROF. DR. SUNULLAH ÖZBEK

  2. Biogas recovery during anaerobic treatment of lignocellulose-rich pollutants with high sulphate content: an investigation via innovative applications

    Yüksek sülfat içerikli lignoselüloz bakımından zengin kirleticilerin havasız arıtımı sırasında biyogaz geri kazanımı: yenilikçi uygulamalarla bir araştırma

    EDA YARSUR

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Çevre Mühendisliğiİstanbul Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    PROF. DR. ÇİĞDEM GÖMEÇ

  3. Microalgae growth in anaerobic digestate for high-value product recovery

    Anaerobik çürütücü çıkış suyunda büyütülen mikroalglerden değerli ürün geri kazanımı

    HANDE ERMİŞ

    Doktora

    İngilizce

    İngilizce

    2020

    Çevre Mühendisliğiİstanbul Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MAHMUT ALTINBAŞ

  4. Valorization of municipal wastewater and manure by circular bioeconomy approach

    Kentsel atıksu ve hayvan dışkısının döngüsel biyoekonomi yaklaşımıyla değerlendirilmesi

    İPEKNUR ATAY

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Çevre Mühendisliğiİstanbul Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MAHMUT ALTINBAŞ

  5. Modelling the biomass energy potential in electricity generation to support Türkiye's transition to low-carbon future

    Türkiye'nin düşük karbonlu geleceğe geçişini desteklemek için elektrik üretiminde biyokütle enerji potansiyelinin modellenmesi

    ALİ ERDİNÇ ERSOY

    Doktora

    İngilizce

    İngilizce

    2024

    EnerjiHacettepe Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞENUR UĞURLU