Geri Dön

Machine learning in cybersecurity: exploring approaches for malware detection and categorization

Başlık çevirisi mevcut değil.

  1. Tez No: 938459
  2. Yazar: SAQIB SHABIR PEERZADA
  3. Danışmanlar: YRD. DOÇ. DR. AHMET ŞENOL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: İngilizce
  9. Üniversite: Üsküdar Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Siber Güvenlik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 54

Özet

This study focuses on the complex task of malware detection by creating, assessing, and contrasting machine learning and deep learning models for the identification and categorization of malware contained in both text files as well as executable (.EXE) file types. The research employs a rigorous quantitative research methodology and utilises two main datasets. One of them being Dike Dataset for Portable executable and object linking and embedding files, and the Malware Categorization Dataset for .txt file formats. This study will utilize Neural Networks (ANN), Artificial Neural Networks (ANN), Random Forest Classifier, AdaBoost Classifier, and Convolutional Neural Networks (CNN1D), are thoroughly evaluated and analysed using metrics such as accuracy, precision, recall, F1 score, and confusion matrices. The study demonstrates the improved effectiveness of the HistGradientBoosting Classifier and Random Forest Classifier in analysing text and EXE files, respectively. It also compares their performance with that of ANN and CNN1D models. The integration of these models into a user-centric Streamlit application expands the availability of sophisticated virus detection approaches. The results highlight the strong capacity of integrating machine learning and deep learning to enhance cybersecurity technologies and processes. This incorporation into a functional application represents a significant improvement in cybersecurity measures designed for both personal and institutional utilisation.

Özet (Çeviri)

This study focuses on the complex task of malware detection by creating, assessing, and contrasting machine learning and deep learning models for the identification and categorization of malware contained in both text files as well as executable (.EXE) file types. The research employs a rigorous quantitative research methodology and utilises two main datasets. One of them being Dike Dataset for Portable executable and object linking and embedding files, and the Malware Categorization Dataset for .txt file formats. This study will utilize Neural Networks (ANN), Artificial Neural Networks (ANN), Random Forest Classifier, AdaBoost Classifier, and Convolutional Neural Networks (CNN1D), are thoroughly evaluated and analysed using metrics such as accuracy, precision, recall, F1 score, and confusion matrices. The study demonstrates the improved effectiveness of the HistGradientBoosting Classifier and Random Forest Classifier in analysing text and EXE files, respectively. It also compares their performance with that of ANN and CNN1D models. The integration of these models into a user-centric Streamlit application expands the availability of sophisticated virus detection approaches. The results highlight the strong capacity of integrating machine learning and deep learning to enhance cybersecurity technologies and processes. This incorporation into a functional application represents a significant improvement in cybersecurity measures designed for both personal and institutional utilisation.

Benzer Tezler

  1. Machine learning approach for external fraud detection

    Dış saldırıların belirlenmesi için makine öğrenimi yaklaşımı

    AJI MUBALAIKE

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    PROF. DR. ERTUĞRUL KARAÇUHA

    PROF. DR. EŞREF ADALI

  2. Mil-Std 1553 tabanlı sistemler için yeni bir saldırı tespiti yaklaşımı

    A new intrusion detection approach for Mil-Std 1553 based systems

    YUNUS EMRE ÇİLOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ŞERİF BAHTİYAR

  3. Makine öğrenme yöntemlerini kullanarak çok değişkenli zaman serisi analizi ve tahmin

    Multivariate time series analysis and forecasting using machine learning methods

    LUBNA ALANIS

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMersin Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HAMZA EROL

  4. Anomaly detection in ınternet of medical things using deep learning

    Anomaly detect ionin internet of medical things using deep learning

    AYŞE BETÜL BÜKEN

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    PROF. DR. DEVRİM AKGÜN

  5. Makine öğrenmesi tabanlı hibrit algoritma ve hibrit veri seti ile ddos saldırı tahmini

    Machine learning based hybrid algorithm and ddos attack prediction with hybrid dataset

    SELİM ERDAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AHMET ARİF AYDIN