Geri Dön

Konum-zaman verisi tabanlı hareket karakterizasyonu

Mobility characterization based on spatio-temporal data

  1. Tez No: 941778
  2. Yazar: EMİNCAN KERESTECİ
  3. Danışmanlar: PROF. DR. BÜLENT TAVLI
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 93

Özet

Konum-zaman tabanlı parmak izi çıkarımı, bireylerin seyahat davranışlarını analiz etme ve anonimleştirilmiş verilerden kullanıcı kimliklerini tahmin etme süreçlerinde önemli bir rol oynayan, güncel gezginlik (mobility) analizi alanında kritik bir yaklaşımdır. Bu bağlamda, özellikle Trajectory-user linking (TUL) kapsamında yapılan çalışmalar, Lokasyon Tabanlı Sosyal Ağ (LBSN) verileri üzerinde çeşitli yapay sinir ağı modellerinin geliştirilmesiyle dikkat çekmektedir. Bununla birlikte, GPS gibi sıralı ve zamansal boyut içeren konum verileriyle çalışan yapay sinir ağı modellerine ilişkin literatürde henüz kapsamlı bir çalışma bulunmamaktadır. Bu eksikliği gidermek amacıyla, sıralı konum-zaman verilerini işleyebilen yenilikçi bir model olan Spatio-Temporal Sequential Graph Neural Network (STSeqGNN) bu çalışmada önerilmiştir. Geliştirilen model, hem haritanın çizge yapısını hem de verilerin zaman boyutunu etkili ve verimli bir şekilde işleyebilme kabiliyetiyle öne çıkmaktadır. Ayrıca, güzergahlara ait hareket bilgilerini ve temel istatistiksel özellikleri de analiz edebilme yeteneğine sahiptir. Bu özellikleri sayesinde, STSeqGNN hem veri bütünlüğünü koruyarak hem de hareket paternlerini anlamlandırarak daha hassas tahminlerde bulunabilmektedir. Modelin performansı, farklı veri setleri üzerinde test edilmiş ve sonuçlar, k-tahmin doğruluğu (k-accuracy) metriği kullanılarak değerlendirilmiştir. Elde edilen bulgular, modelin \%99'un üzerinde bir başarı oranına ulaşarak, özellikle seyahat davranışı analizinde etkili bir yöntem sunduğunu göstermektedir. Bu durum, STSeqGNN'nin hem teorik hem de pratik açıdan güçlü bir araç olduğunu kanıtlamaktadır

Özet (Çeviri)

Spatio-temporal fingerprinting plays a crucial role in contemporary mobility analysis, particularly in understanding travel behaviors and inferring user identities from anonymized data. In this context, studies under the Trajectory-User Linking (TUL) framework have focused on developing various neural network models using Location-Based Social Network (LBSN) data. However, there is a notable gap in the literature regarding neural network models designed specifically to process sequential spatio-temporal data, such as GPS traces. To address this gap, this study introduces an innovative model called the Spatio-Temporal Sequential Graph Neural Network (STSeqGNN), capable of processing sequential spatio-temporal data effectively. The proposed model excels in leveraging both the graph structure of the map and the temporal dimension of the data, ensuring efficient and accurate processing. Additionally, it evaluates the mobility patterns and fundamental statistical properties of trajectories, enabling more precise predictions while preserving data integrity. The model's performance was evaluated on multiple datasets, and the results were assessed using the k-accuracy metric. The findings demonstrate that STSeqGNN achieves an accuracy of over 99\% across various datasets, highlighting its effectiveness in analyzing travel behaviors. These results underline the model's strong potential as a powerful tool for both theoretical exploration and practical applications in mobility analysis.

Benzer Tezler

  1. Synthesis & characterization of CdSe/ZnS quantum dots

    CdSe/ZnS kuantum noktalarının sentezi ve karakterizasyonu

    HAKAN AYDIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Enerjiİstanbul Teknik Üniversitesi

    Nanobilim ve Nanomühendislik Ana Bilim Dalı

    PROF. DR. HİLMİ ÜNLÜ

  2. Practical implementation and real-world validation of reconfigurable intelligent surfaces

    Yeniden yapılandırılabilir akıllı yüzeylerin pratik uygulaması ve gerçek dünya doğrulaması

    SEFA KAYRAKLIK

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik MühendisliğiKoç Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERTUĞRUL BAŞAR

  3. COLREGs-compliant and non-prioritized motion planning for autonomous unmanned surface vehicles

    Otonom insansız deniz araçları için COLREG-uyumlu ve önceliksiz hareket planlaması

    MUSTAFA BAYRAK

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİstanbul Medeniyet Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HALUK BAYRAM

  4. A social navigation approach for mobile assistant robots

    Asistan mobil robotlar için sosyal bir navigasyon yaklaşımı

    HASAN KIVRAK

    Doktora

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HATİCE KÖSE

  5. Comparison of quaternion-based orientation estimation methods using 9-dof marg sensors

    Dokuz serbestlik dereceli marg sensörleri kullanılarak dördey tabanlı yönelim kestirim yöntemlerinin karşılaştırılması

    BURAK TANTAY

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. HAKAN TEMELTAŞ