Sürekli faz modülasyonunun çok düzeyli kodlanması
Multilevel coding of continuous phase modulation
- Tez No: 100736
- Danışmanlar: PROF.DR. ÜMİT AYGÖLÜ
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1999
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 193
Özet
ÖZET Sürekli faz modülasyonu, sabit zarf, iyi band ve güç verimliliği özellikleri ne deniyle, gezgin radyo ve uydu iletişimi gibi band ve güç sınırlı ortamlar için oldukça uygun bir modülasyon türüdür. Üstelik dış kodlama işlemi yardımıyla güç verimliliği daha da artınlabilmektedir. Çok düzeyli kodlama/ çok aşamalı kodçozme, modülasyonlu işaretin birden fazla kodlayıcı tarafından belirlendiği ve alıcı kısımda da çok aşamalı olarak çözüldüğü bir kanal kodlama tekniğidir. Bu teknik, kodlama kazancı yüksek (hata olasılığı düşük) ve alıcı donanımı basit sistem tasarımlarına olanak tanımaktadır. Bu çalışmada, literatürde bulunan yöntemlere yeni bir alternatif olarak sü rekli faz modülasyonunun çok düzeyli olarak kodlanması ve çok aşamalı olarak çözülmesi önerilmektedir. Bu amaçla, sürekli faz modülasyonunun en çok bilinen biçimi olan, frekans darbe yanıtının dikdörtgen olarak seçildiği CPFSK modü lasyonu için, çok düzeyli kodlama/çok aşamalı kodçozme tekniğine dayalı olarak AWGN ve sönümlemeli kanallar için yeni sistemler tasarlanmıştır. Sistemler, J ve P ortak bölenleri olmayan iki tamsayı olmak üzere, modülasyon indisi J/P olan M bilgi genlik düzeyli CPFSK modülasyonu için M > 2P koşulu altında elde edilmiştir. Tasarlanan sistemlerin hata başarım incelemeleri, analitik bit hata olasılığı üst sınırları ve bilgisayar benzetimleri yardımıyla yapılmıştır. Bu amaçla, çok düzeyli sistemlerin AWGN ve sönümlemeli kanallardaki bit hata olasılığı üst sınır larının hesaplanabilmesine olanak tanıyan yeni bir yöntem önerilmiştir. Böylece, üst sınırlardan, bilgisayar benzetiminden ve ayrıca kodçözücülerin donanım kar maşıklığının bir ölçütü olan“kodçozme karmaşıklığı”tanımından yararlanarak, yeni sistemlerin, literatürde daha önce var olan kodlara kıyasla hata başarımı ve kodçozme karmaşıklığı üstünlükleri sağladıkları gösterilmiştir. Ayrıca, literatür de daha önce tek düzeyli durumda belirtilenlerin aksine, kodlama ile sürekli faz modülasyonunun kolayca birleştirilebileceği ve değişik bit/simge oranlarında kod tasarımının kolayca gerçekleştirilebileceği gösterilmiştir. xıv
Özet (Çeviri)
MULTILEVEL CODING OF CONTINUOUS PHASE MODULATION SUMMARY Because of their attractive bandwidth efficiency properties, continuous phase modulation (CPM) schemes have gained considerable interest in modern digi tal telecommunications. The phase continuity of CPM signals improves spectral properties, and introduces memory which induces error control capability and therefore power efficiency. In a channel with a nonlinear transmitter power am plifier, constant envelope signals must be used. Even though some modulation techniques without memory (e.g. PSK) have constant envelope, the use of the transmitter filter destroys constant envelope property. Since CPM has excellent spectral properties without the need for filtering of the transmitted signal, it is well suited choice for such cases. The power efficiency of CPM can be improved by combining coding with CPM. In recent years, mainly three different optimiza tion techniques for coded CPM have been proposed for additive white gaussian noise (AWGN) channels. In the first technique, the external encoder and CPM modulator are optimized for the predetermined CPM parameters, the rate and the constraint length of the encoder, by looking for the code achieving the maximum free Euclidean dis tance (d/B) which is the key parameter in error performance evaluation at high signal-to-noise ratio for AWGN channels. In the second method, called matched encoding, the combined coding and CPM schemes maximize djE for a given to tal number of trellis states. In the third technique, CPM is decomposed into a time invariant continuous phase encoder (CPE) and a time invariant memoryless modulator (MM). This decomposition allows the direct combination of memory parts of the CPM modulator and the external convolutional encoder. By using this method, the overall encoder can be designed to obtain maximum df£. All of the optimization methods cited above are partly based on trellis coded modula tion (TCM) which is a well known power/bandwidth efficient coded modulation technique. Another power/bandwidth efficient coded modulation technique is the multi level coding/multistage decoding which leads to large coding gain and low decod ing complexity at the expense of an increase in the decoding delay. The multilevel coding scheme employs, at each signalling interval, one or more output bits of each of several binary error-control encoders to construct the signal to be trans mitted. The Hamming distances of component binary codes are linearly related to the Euclidean distances between partitioned signal subsets. An important advantage of the multilevel coding is the possibility of suboptimum multistage decoding of each code with decoded information transferred from one stage to xvthe next. This permits the decoding complexity to be reduced at each stage and therefore for the overall system. In coding theory, although the most frequently assumed channel model is AWGN channel, fading channel is also another important channel model for many communication systems such as mobile satellite, HF radio and meteor burst links. Due to the strictly band-limiting condition caused by the growing demand of the users, good spectral properties have further importance besides power efficiency properties for this kind of channels. Therefore, CPM is very suitable for fading channels. As mentioned, the design criterion for the TCM technique on the AWGN channel is the maximization of d/jg. However, the codes optimized for the AWGN channel are not generally optimum for fading channels for which the effective code length (ECL) and the squared product distance (d%) are the most significant criteria instead of djE. ECL is defined as the number of nonzero pairwise distances between the symbols along the shortest erroneous path and those along the correct path and d% is defined as the product of the nonzero squared pairwise distances between the symbols along the path pair with length ECL. In the literature, there is not any research on coding of CPM for fading channels except for a few papers. So, this is an open area for coding theory. In this thesis, multilevel coding of continuous phase frequency shift keying (CPFSK) which is the rectangular frequency pulse shaped case of CPM is pro posed in order to obtain systems having high coding gain and low decoding com plexity for AWGN and/or fading channels. The proposed systems are obtained under the constraint M > IP for M-ary CPFSK with modulation index h = J/P, where J and P are relatively prime positive integers. It is also shown that com bining multilevel coding with CPFSK provides the design simplicity. For fading channels, it is assumed that the fading effect on the phase of the received signal is compensated for by some technique, e.g. phase-locked loop. So, the fading only effects the amplitude of the received signal. It is also considered the case of independent fading of adjacent symbols (ideal fading) under ideal interleaver/deinterleaver conditions and coherent detection with ideal channel state information (CSI) where the fading amplitude is determined at the receiver. The transmitted M-ary CPFSK signal having“tilted phase”over the interval nT < t < (n + 1)T can be written as «(0 = ^coa[2xfxt + Khd^r^ + 9n] (1) where E is the symbol energy, T is the symbol duration, fc is the carrier fre quency and f1 = fc - (M - l)h/2T is the modified carrier frequency. an E {±1,±3,...,±(M- 1)} is the nth information symbol and fin G {0, 1,...,M- 1} is the modified nth information symbol which is defined as Şn - (an + (M - 1))/2. 0n denotes the memory term of the modulation and satisfies 0n+l = (0n + ^h/3n)mod2-n. (2) Then, the phase trellis corresponding to this equation is time invariant and can be shown as in Fig. 1 where M > IP. Note that, for h = J/P, 0n 6 {0, (2Trh)mor> °n.) ^ 1st slate 0 (2TCh>n>od2TT (2TCh)mod27T 2nd State Pth state Fig. 1. M-ary CPFSK phase trellis (h = J/P, M > 2P). M-ary CPFSK signal set So can be divided into Q-level nonoverlapping subsets to form a partition chain So/ Si/... /Sq,where 5,- denotes the ith level partitioned set (i = 0,1,..., Q), with minimum subset distances A0 < Ax . o E 2 s(t.J3> Fig. 2. Multilevel coded M-ary CPFSK system (Q = log2(2M/P)). The proposed multilevel coded system structure having Q coding levels is shown in Fig. 2. To each partitioning level 5,_i/5,-,i = 1,2,...,Q a binary convolutional code C, is associated with free Hamming distance djjji and rate Ri = ki/rn. In order to achieve high coding gain and low decoding complexity, convolutional codes which maximize the performance criteria for a given code rate and having the suitable constraint length for a given Hamming distance are used. To reduce further the decoding complexity punctured convolutional codes are also used. At the last level, P-ary CPFSK, h = JjP signal set can be coded by a convolutional encoder (Cq) with rate Rq = kç/nç. The combination of Cq and CPEq (Cq + CPEq) is represented as“coded P-ary CPFSK, h = J/P”in the figure. For the last level, previously given P-ary CPFSK, h = J/P trellis codes can be used. In Fig. 2, MM represents memoryless mapping rule of the overall system. If /i; denotes the number of the ith encoder output bits per channel symbol, it can be easily shown that /*. ' 1, » = 1,2,...Q-1 log2P, i - Q (3) for the proposed system. Rs denoting the multilevel system rate in bits/symbol is also given by xvinQ R. = Y,Ril*i. (4) «=ı For AWGN channels, the squared free Euclidean distance (djE) of the overall system is given by d2fF< = min [rf2/r.,] = 1TŞ_l[*l-ld/HUdJBQ] (5) where dfEi is the squared free Euclidean distance of the ith level trellis code. dfEQ is obtained from coded P-ary CPFSK, h = J/P trellis. The normalized squared free Euclidean distance ( is the energy per information bit. The equation E = RaEb can be easily derived. For fading channels, the effective code length (ECL) of the overall system is given by ECL = min [ECLA 1 and L=S at a larger bits/symbol rate. Similarly, Sys. - 5 has ACG and decoding complexity advantages over the corresponding reference codes. In this thesis, 60 new systems with various bits/symbol rates are proposed for 4-ary CPFSK, h=l/2 on AWGN channels. The new systems have larger ACGs and lower decoding complexities with respect to the best reference codes. 20 new systems are proposed for 8-ary CPFSK, h=l/2 and 16-ary CPFSK, h=l/2. Similarly, 20 systems are proposed for 8-ary CPFSK, h=l/4 and 16-ary CPFSK, h=l/4 and 5 new sytems are proposed for 16-ary CPFSK, /i=l/8. The new systems have ACG and decoding complexity advantages over their counterparts given in the literature. The ACG is a fair performance measure only at high signal to noise ratio values. A more general performance measure for the trellis codes are the upper bounds on the error probabilities derived by the transfer function approach. The xxperformance in terms of bit error probability has been evaluated by Zehavi-Wolf approach which can be applied to a broad class of trellis codes with some symme try properties, namely,“uniform error properties”(UEP). For a multilevel system, the bit error probability was firstly analized by Kofman, Zehavi and Shamai for 8-PSK modulation. In this thesis, a new error probability upper bound between the partitioned subsets is proposed. By using this approach, for AWGN channels, the bit error probability of the decoder at the ith level (i = 1,2,..., Q) is upper bounded by **hQ[\ J exP\ ae>\t t 2EN0 i rK AENo ' dl (9) 7=1 where Q(x) = (l/V2~ir)fTexp(-t2/2yit and Ti(W^\l) is the transfer function of the ith level code. W^ is the bit error probability upper bound between the ith level subsets which can be calculated from w{
Benzer Tezler
- Sürekli faz modülasyonununçok düzeyli turbo kodlanması
Multilevel turbo coded continuous phase modulation
NİYAZİ ODABAŞIOĞLU
Doktora
Türkçe
2006
Elektrik ve Elektronik Mühendisliğiİstanbul ÜniversitesiElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. OSMAN NURİ UÇAN
- Faz bozulmalı sönümlemeli ortamlarda çok modülasyon indisli sürekli faz modülasyonu
Multi-h continous phase modulation over fading channels with imperfect phase reference
BEKİR PUNAR
Yüksek Lisans
Türkçe
2004
Elektrik ve Elektronik MühendisliğiYıldız Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. METİN YÜCEL
- Çok modülasyon indisli sürekli faz modülasyonu için çoklu kafes kodlar
Multipple trellis codes for multi-h phase coded modülation
AYNUR AKAR
Doktora
Türkçe
1997
Elektrik ve Elektronik MühendisliğiYıldız Teknik ÜniversitesiTelekomünikasyon Ana Bilim Dalı
DOÇ.DR. ÜMİT AYGÖLÜ
- Uzay-zaman kodlamalı çoklu msk yapıları
Space-time coded multiple msk schemes
ALİ EMRE PUSANE
Yüksek Lisans
Türkçe
2002
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiHaberleşme Ana Bilim Dalı
PROF. DR. ÜMİT AYGÖLÜ
- Düşük yoğunluklu parite kontrol kodlarının hata başarımı
Error performance of low density parity check codes
YEŞİM HEKİM
Yüksek Lisans
Türkçe
2005
Elektrik ve Elektronik Mühendisliğiİstanbul ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF.DR. OSMAN NURİ UÇAN