Beklemesiz akış tipi çizelgeleme problemlerinin çözümünde yapay sinir ağları yaklaşımı
An artifical neural networks approach for solving the no-wait flowshop scheduling problems
- Tez No: 178264
- Danışmanlar: YRD. DOÇ. DR. M. ATİLLA ARICIOĞLU
- Tez Türü: Yüksek Lisans
- Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
- Anahtar Kelimeler: Beklemesiz Akış Tipi Çizelgeleme Problemleri, Yapay Sinir Ağları, Genetik Algoritma, No-Wait Flowshop Scheduling Problems, Artifical Neural Networks, Genetic Algorithms
- Yıl: 2008
- Dil: Türkçe
- Üniversite: Selçuk Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 74
Özet
Yapay Sinir Ağları, kombinatöryel optimizasyon problemlerinin çözümünde optimal yada optimale yakın çözümler sunmaktadır. Bu çalışmada Beklemesiz Akış Tipi Çizelgeleme(BATÇ) problemlerini çözmek için Yapay Sinir Ağları(YSA) yaklaşımı önerilmiştir. Agarwal ve arkadaşları (2006b) tarafından geliştirilen, Yapay Sinir Ağları için Adaptif Öğrenme Yaklaşımı, Beklemesiz Akış Tipi Çizelgeleme problemlerine uygulanmıştır. Önerilen Yapay Sinir Ağlarının performansı, Aldowasian ve Allahverdi'nin (2003) önerdiği Genetik Algoritma(GA) ile karşılaştırılmıştır. Önerilen Yapay Sinir Ağları yaklaşımı ve Genetik Algoritma çözümleri için Delphi programlama dilinde yazılım yapılmıştır. Beklemesiz Akış Tipi Çizelgeleme problemleri için literatüre uygun olarak toplam 192 adet problem seti oluşturulmuştur. Bu problemler önerilen Yapay Sinir Ağları yaklaşımı ve Genetik Algoritma ile çözülmüş ve elde edilen sonuçlar karşılaştırılmıştır. Önerilen Yapay Sinir Ağları yaklaşımının çözümlerinin, Genetik Algoritmaya göre daha iyi olduğu görülmüştür.
Özet (Çeviri)
Artificial Neural Networks serve up optimal or near optimal results for solving combinatorial optimization problems. In this study, Artificial Neural Networks approach has been proposed for solving No-wait Flowshop Scheduling problems. An Adaptive Learning Approach for the Artifical Neural Networks which have been improved by Agarwal and friends (2006), has been applied for No-wait Flowshop Scheduling problems. To compare for the performance of proposed Artificial Neural Networks approach has been used Aldowasian and Allahverdi?s (2003) Genetic Algorithm. Programs for the algorithm of Artificial Neural Networks approach and the Genetic Algorithm solutions are written in Delphi Language. For the No-wait Flowshop Scheduling problems, a total of 192 problem set suiting the literature is created. Proposed Artificial Neural Networks approach?s solutions are compared to the solutions of Genetic Algorithm. The results show that proposed Artificial Neural Networks approach?s solutions give better results than the Genetic Algorithm.
Benzer Tezler
- Beklemesiz akış tipi çizelgeleme problemleri için hibrit gri kurt optimizasyon algoritması
Hybrid gray wolf optimization algorithm for no-wait flow shop scheduling problems
CENGİZ KINA
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHarran ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. İBRAHİM BERKAN AYDİLEK
- Developing and applying multi-threaded metaheuristic policies to solve combinatorial industrial engineering problems
Endüstri mühendisliğindeki kombinatoryal optimizasyon problemlerinin çözümü için çoklu iş parçacıklı metasezgisel politikalar geliştirilmesi ve uygulanması
İSMET KARACAN
Doktora
İngilizce
2023
Endüstri ve Endüstri MühendisliğiMarmara ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. SEROL BULKAN
PROF. DR. ÖZLEM ŞENVAR
- Beklemesiz akış tipi çizelgeleme problemlerinin çok amaçlı melez genetik algoritma ile çözümü
Solving the no wait flow shop scheduling problems by multi objective hybrid genetic algorithm
KENAN KESKİN
Yüksek Lisans
Türkçe
2010
Endüstri ve Endüstri MühendisliğiSelçuk ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. ORHAN ENGİN
- Beklemesiz akış tipi çizelgeleme problemlerinin bulanık ortamda dağınık arama yöntemi ile çözümü
Solution of no-wait flow shop scheduling problems with scatter search method in fuzzy environment
RAMAZAN BAŞAR
Yüksek Lisans
Türkçe
2021
Endüstri ve Endüstri MühendisliğiKonya Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. ORHAN ENGİN
- Bi-objective no-wait permutation flowshop scheduling problems
İki amaçlı beklemesiz permutasyon akış tipi çizelgeleme problemleri
DAMLA YÜKSEL
Yüksek Lisans
İngilizce
2019
Endüstri ve Endüstri MühendisliğiYaşar ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. LEVENT KANDİLLER
PROF. DR. MEHMET FATİH TAŞGETİREN