Çok kriterli optimizasyon için genetik algoritma yaklaşımları
Genetic algorithm approaches for multiobjective optimization
- Tez No: 178815
- Danışmanlar: YRD. DOÇ. DR. MEHMET ÇUNKAŞ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Computer Engineering and Computer Science and Control, Science and Technology
- Anahtar Kelimeler: Çok amaçlı optimizasyon, Pareto-Optimal Çözümler, evrimsel algoritmalar, Multiobjective optimization, Pareto-Optimal Solutions, Evolutionary Algorithms, MOEAT
- Yıl: 2008
- Dil: Türkçe
- Üniversite: Selçuk Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 113
Özet
Gerçek dünya problemleri genelde çok amaçlıdır. Bu problemlerin çözümü birbiriyle çelişen çoklu amaçların eşzamanlı olarak optimizasyonunu gerektirir. Çok amaçlı optimizasyon tek amaçlı optimizasyondan çok farklıdır. Tek-amaçlı optimizasyonda amaç, en iyi olan tek bir tasarım veya kararı elde etmektir. Çok amaçlı optimizasyonda ise birbiriyle çelişen amaçlar, içersinde üzerinde uzlaşma sağlanan bir optimal çözümler kümesi elde edilir. Bu küme genellikle Pareto-Optimal çözümler kümesi olarak adlandırılır. Çok amaçlı optimizasyon problemlerinin çözümü için 1985'ten bu yana evrimsel algoritmaları kullanan çeşitli yaklaşımlar önerilmiştir. Bu tez çalışmasında, başlıca sekiz adet çok amaçlı evrimsel algoritma (Vektör Değerlendirmeli Genetik Algoritma, Çok Amaçlı Genetik Algoritma, Hücrelendirilmiş Pareto Genetik Algoritması, Bastırılmamış Sınıflandırmalı Genetik Algoritma, Bastırılmamış Sınıflandırmalı Genetik Algoritma II, Kuvvet Pareto Evrim Algoritması, Kuvvet Pareto Evrim Algoritması 2 ve Pareto Zarflama-Temelli Seçim Algoritması) orijinal halleri esas alınarak detaylı olarak incelenmiştir. Algoritmaların değerlendirilmesi için bazı performans ölçütleri kullanılmıştır. Tüm algoritmalar için C ailesinin son uzantısı olan nesne yönelimli görsel programlama dili C# kullanılarak MOEAT(Multiobjective Evolutionary Algorithms Tool) adı verilen ortak bir arayüzde editör ve simülasyon yazılımı geliştirilmiştir. Ayrıca, literatürden seçilen sekiz adet test problemi ve iki adet mühendislik problemi aracılığıyla, yazılımın kullanılabilirliği ve işlevselliği denenmiştir.
Özet (Çeviri)
Real world problems are multiobjective in nature. Solution of these problems mostly require the optimization of conflicting objectives each other simultaneously. Multiobjective optimization is principally different from single objective optimization. In single-objective optimization, it is attempted to obtain the best design or decision for an objective. In multiobjective optimization, the objectives which are in competition with each other cause the results to be drifted to not only a solution but to a set of compromise optimal solutions. Such solutions are known as Pareto-Optimal solutions. Various approaches used evolutionary algorithms have been proposed to solve optimization problems since 1985. In this thesis study, mainly eight multiobjective evolutionary algorithms (Vector Evaluated Genetic Algorithm, Multiobjective Genetic Algorithm, Niched Pareto Genetic Algorithm, Nondominated Sorting Genetic Algorithm, Nondominated Sorting Genetic Algorithm-II, Strength Pareto Evolutionary Algorithm, Strength Pareto Evolutionary Algorithm 2, and Pareto Envelope-based Selection Algorithm) have been examined in detail by taking into consideration original papers published. Some performance metrics to evaluate the algorithms have been observed. And all algorithms have been developed as an editor simulation software called MOEAT (Multiobjective Evolutionary Algorithms Tool) in common interface by using object oriented programming language, C#, which is the final extension of C family. Also the software was run over eight test problems, and two real world engineering problems which were used on this issue and taken from literature, and hopeful results were obtained.
Benzer Tezler
- Yenilenebilir enerji planlaması için bütünleşik çok amaçlı bir karar modeli önerisi
An integrated multi-objective decision model for renewable energy planning
BEYZANUR ÇAYIR ERVURAL
Doktora
Türkçe
2018
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. RAMAZAN EVREN
- Washing machine product family design with modular product design approach
Modüler ürün tasarımı yaklaşımıyla çamaşır makinesi ürün ailesi tasarımı
TUBA DOLAR
Yüksek Lisans
İngilizce
2021
Makine Mühendisliğiİstanbul Teknik ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. ATA MUGAN
- Time–cost–quality trade-off problems using evolutionary algorithms
Zaman-maliyet-kalite ödünleşim sorunlarının evrimsel algoritmalar kullanımı ile çözülmesi
YASHAR ARMAGHANI
Yüksek Lisans
İngilizce
2014
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. GÜL POLAT TATAR
- Bütünleşik üretim ve dağıtım çizelgeleme problemleri için çözüm yaklaşımları
Solution approaches for integrated production and distribution scheduling problems
ECE ÇETİN YAĞMUR
Doktora
Türkçe
2021
Endüstri ve Endüstri MühendisliğiKonya Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. SAADETTİN ERHAN KESEN
- Architectural form exploration by soft computing: The case of post-disaster shelter
Esnek hesaplama aracılığıyla mimari biçim arayışları: Afet sonrası barınak örneği
FÜSUN CEMRE KARAOĞLAN
Yüksek Lisans
İngilizce
2018
Mimarlıkİstanbul Teknik ÜniversitesiBilişim Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SEMA ALAÇAM