Geri Dön

Manyezit flotasyonu ve flostasyonun KÜMAŞ tesisi artıklarına uygulanması

Magnesite flotation and application to fine tailings of Kümaş Plant

  1. Tez No: 19366
  2. Yazar: NİL ÇORUHLU
  3. Danışmanlar: DOÇ.DR. SUNA ATAK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Maden Mühendisliği ve Madencilik, Mining Engineering and Mining
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1991
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 72

Özet

ÖZET Kütahya Kumaş Manyezit Tesisinde Rezervi yaklaşık bir milyon tonu bulan ve silis içeriği nedeniyle satılamayan ince artıkların flotasyon yolu ile değerlendirilmesi ve bu amaç doğrultusunda, seçilen saf numunelerle manyezitin ve yantaşın özelliklerinin belirlenmesi bu tezin konusunu teşkil etmektedir. Tesis ince artıklarındaki manyezit minerali kriptokristalen yapıda "olup, beyaz ve renkli (bej, gri) kısımlar içermektedir. Beyaz manyezit ve bej manyezit olarak adlandırılan ve seçilerek ayrılan bu numunelerin yanısıra iri kristalli yapıda olan ve Avusturya Radenthein tesisinden getirilen saf manyezit numunesiyle de çalışılıp elde edilen sonuçlar kriptokristalen manyezitlerle karşılaştırılmıştır. Ayrıca Kumaş Tesis artıklarında ana yantaş ve başlıca silis kaynağı olan serpantin numunesiyle flotasyon özelliklerini araştırmak üzere deneyler yapılmıştır. Saf minerallerin öncelikle kimyasal, mineralojik ve yüzey özellikleri belirlenmiş ardından flotasyon deneylerine geçilmiştir. Kimyasal ve mineralojik çalışmalar sonucu bej manyezitin beyaz manyezite göre daha ince kristalli olduğu ve kristal boşluklarını kil minerallerinin doldurduğu X-ışınları etüdü ve elektron mikroskop çalışmaları ile kanıtlanmıştır. Manyezit numunelerinin yüzey elektrik yüklerinin değişimini saptamak amacıyla zetametre ile yapılan deneylerde ise her üç manyezitin de nötr ve alkali pH'da negatif yüklü oldukları saptanmıştır. Saf minerallerle yapılan flotasyon deneyleri sonucu, sodyum oleatla beyaz manyezitin ve iri kristalli manyezitin pH: 8-10 'da yüzdüğü fakat bej manyezitin yüzemediği görülmüştür. Serpantin ise ancak oleat konsantrasyonu artırıldığında bu pH aralığında yüzebilmektedir. Kontrol reaktifi olarak, sodyum silikat, beyaz manyeziti etkilemezken, bej manyeziti ve serpantini kolaylıkla bastırmaktadır. Kalgon ise bej manyeziti ve serpantini bastırırken beyaz manyeziti etkilememektedir. Ayrıca manyezit için potansiyeli tayin eden iyonlar Mg++ beyaz manyezitin flotasyon verimini yükseltirken, iri kristalli manyezitin düşürmüş CO3 iyonunun ise, bir etkisi görülmemiştir. Toplayıcı reaktif olarak Amin ile yapılan deneylerde ise, iri kristalli manyezit yüksek verimle yüzerken, kriptokristalen manyezitler yüzmemiş, serpantin ise ancak yüksek konsantrasyonlarda yüzebilmiştir. Tesis ince artıklarıyla yapılan mikroflotasyon deneylerinde elde edilen sonuçların ışığında yapılan flotasyon deneylerinde ise sodyum oleatla birlikte sodyum silikat ve kalgonun etkileri araştırılmıştır. Seri deneyler sonucunda, % 1.İh Sİ02, % 2.46 CaO, % 39.3 ffeO içeren cevherden % 2.71 SİO2, % 1.72 CaO ve % 43.24 MgO içerikli konsantre. % 52.3 verimle, 2000 g/ton sodyum silikat, 1000 g/ton sodyum oleat ile pH:8'de kazanılmştır. vııı

Özet (Çeviri)

MAGNESITE FLOTATION AND APPLICATION TO FINE TAILINGS OF KİİMAŞ PLANT SUMMARY Magnesia is one of the most important subtances in refractory manufacturing. Its value is mainly depending on the impurities such as silica,iron and calcium minerals. Magnesite ores are considered as extra quality, if silica contents are less than one percent. Ores containing more than 3 percent silica can be used to produce the refractory materials after blending with the low silicious ores. In Turkey, there are large magnesite deposits in a poligon surrounded by Eskişehir, Kütahya, Bursa and Konya Magnesite ores occur in this area on serpantine and ultrabasic rocks after alteration of this rocks depending on the atmospheric conditions and/or underground water and gases.White and coloured (beige and gray) magnesite in cryptocrystalline structure take forms in these ultrabasic rocks as weins, thick layers and stock-werks.The adjoining minerals in the magnesite deposits are mostly serpentine and olivine with some quartz, calcedony and sepiolite which are the main silica source of the ore bodies. Magnesite deposits, nowadays, requires mineral processing for both to be able to obtain good quality products and also to be able to obtain now materials in order to meet the requirments of the refracter technology.Magnesite ores generally contains compositions like dolomite »calcite,burisite serpantine,talk and soluble salts in addition to magnesite.Spatis magnesites are beneficated more difficulty than cryptocrystalline type. The method used today will be hand sorting if there is a liberation between magnesite and the ganque minerals. The benefication method both hand sorting and using automatic equipment are applied to the magnesite ores which are over 40 mm size making use of the difference between the color and the structure. Despite the hand sorting method gives the chance to obtain coarse size and low cost concentration in magnesite ores other benefication processes are needed to be used due to the contains of fine impurities. In the heavy media seperation of benefication processes, it is made use of specific gravity differences between the magnesite and the gang material. In the electrostatic seperation, however, the should be an electric conductivity differece between magnesite and the gang materials. In magna tic seperation, specially, is applied to crytocrystalline magnesites which contains serpantine in the IXganque. In order to seperate the magnesite with no ferritin empunties from serpentine in suitable size serpantine should not loose its magnetic properties due to alteration. New applications concerning with magnetic seperation is now possible after the development of magnetic seperators called“Permroll”. In this seperators the operation costs are considerably- low and the magnetic field density are high comparing to drum and disc seperations. Especially the effects of these seperators on the magnesite ores above +10 mm size magnesite ores can economically be preconcentrated. In graded calcination methods of beneficiation. It is made use of the chananactenstics of calcite and dolomite which are calcinated at lower temperatures than magnesite. Magnesite ores produced in Turkey are consumed or exported either without enrichment or after screening and hand-sorting except Kütahya Magnesite Plant. This plant is equipped with a heavy-media seperation unit and Perm-Roll magnetic separators beside hand- sor tingsys terns. In this plant, after crushing and screening of the ore, hand-sorting is applied to plus 40 mm and 40-30 mm fractions. 30-4 mm fraction is cleaned by heavy media separation and in some cases Perm-Roll magnetic separation is applied to 15-4 mm fraction. Minus -4 mm fraction of this plant namely fine tailings, is a subject of this study. In this thesis the flotation characteristics of white and colored crytocrystalline magnesites have been investigated together with a spa tic Magnesite from Austria. The spatic sample from Austria Radenthein Mine was received in the form of lumps and the magnesite- rich portions were selected of the flotation studies. The white and colored cryptocrystalline magnesite samples were selectively collected from the fine tailligns of Kütahya Magnesite Plant. These samples which the chemicals analysis are given as follows were used in microflotation experiments: The white magnesite contains 46.44 % MgO, 0.19 % Si0~, 1.32 % CaO, 0.60 % Fe203 and 0.24 % Al^. The coloured Magnesite contains, 44.24 % MgO, 0.16 % Si0~, 0.56 % CaO, 0.32 % Fe203 and 1.47 % A1203. The spatic Magnesite contains, 44.49 % MgO, 0.03 % Si09, 2.52 % CaO, 6.88 % Fe203 and 1.71 % Al^. zBesides of this, serpantine which is selected as main gangue mineral from tailings contains 38.97 % MgO, 36.25 % Si09, 0.30 % CaO, 16.40 % Fe203 and 4.12 % A1203. v- ?*? Before flotation tests, physical properties, chemical compositions and mineralogical characteristics were investigated both for the pure minerals and the fine tailings of the concentration plant. The main impurities are determined as clay minerals in coloured, dolomite in white crytocrystalline magnesite and iron in spatic one; by chemical analysis, X-Ray Diffraction and electron microscopy studies. The main differences between white and coloured crytocrystalline magnesite are found as finer crystal size and fiiling of the crystal spaces by clay minerals in coloured one, white and coloured magnesite appear as concentric circles including about 30 percent of coloured magnesite. All magnesites have negative surface electricity in a wide pH range over 7 with the higherst negativity in colourde one. Microflotation experiments were applied to the white and coloured crytocrystalline magnesite, spatic magnesite and serpentine in order to compare their flotation abilities. A modified Hallimond cell was used for this purpose tests were conducted to determine flotation recovery as a function of pH, the type and the amount of collector and madifying agents. The results can be summarized as follows. -Flotation recoveries of white _and spatic magnesites reach to nearly 80 percent at pH: 8-10, when 10 mol/1 sodium oleat is used. - Nearly 80 percent recovery of coloured magnesite at pH: 7 drops to 20 percent at pH: 10 and it raises again at pH: 11, when the same amount of oleate is used. -When the amount of sodium-oleate increases twice, the recoveries of magnesites are also increased with the same manner showing a minimum recovery of 35 percent at pH: 10 in coloured magnesite. -When the amount of sodium oleate increases twice, the recoveries of magnesites are also increased with the same manner showing a minimum recovery of 35 percent at pH: 10 in coloured magnesite. -Serpentine floats with 80 percent of recovery at pH: 8 when 5 times more sodium oleate is used. xi-Although sodium silicate does not depress the white and spatic magnesite, highly depressing effects or noted on serpentine and coloured magnesite. -The effect ojf sodium polyphosphote on all tested minerals is found similar that of the sodium silicate. +2 -2 -Potential determining ions such as Mg and CO- play, different role +2 on spatic and cryptocrystalline magnesites. ' Increasing of Mg ion concentration decreases flotation recovery of white magnesite but slightly increases that of the spatic one. Sodium carbonate effects similarly on both minerals. -Using amine as collector instead of cleate better flottability is achieved with higher recovery in spatic magnesite than cryptocrystalline ones. Under the light of investigation outhlined above flotation studies were performed for the fine tailings of Kumaş Concentration Plant. Minus 4 mm fine tailings containing 7.74 percent SiCL, 2.46 percent CaO, 1.63 percent Fe^Oo and 39.3 percent MgO is used in the experimental work after grinding to minus 0.210 mm. When examinning the results of the chemical analysis of Kumaş" le tailings by size before grinding, towords to the fine sizes it is served that silica and ferrium percentages are increassing while gnesium content are decreassing. It is found that after the dry inding of the material in the ball mill lees than 210 micron size, slime atent seems to be increassing too much. As a result of the mesh analysis after grinding 48% of the terial is found to be beyond 0.038 mm. size Using natural ore,the amount of sodium oleate, sodium licate and pH value of pulp were changeed in the flotation tests to aieve a good selectivity between magnesite and silica ganque. The best suit was obtained with a concentrate containing 2.71 percent Si02,1.72 rcent CaO, 43.24 percent MgO and 52.3 percent yield when 1000 g/ton iium oleate, 2000 g/ton sodium silicate were used at pH:8.0 As result, sodium oleate and silicate concentration are very portant in magnesite flotation. When high amount of sodium oleateis ad »serpantine also floats together with white and coloured magnesite.On e other hand,when the minute amount oleate is consumed, coloured Xllıesite can't float just like serpentine. There fore stage addition of ate is suggested to obtain high yield and low silica content in the ıesite concentrates, after deppressing serpentine by sodium silicate. xxn

Benzer Tezler

  1. Çok değerlikli iyonların manyezit flotasyonuna etkisi

    The Effect of multivalent cations on the floatability of magnesite

    KIVANÇ ANSEN

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    Maden Mühendisliği ve MadencilikHacettepe Üniversitesi

    Maden Mühendisliği Ana Bilim Dalı

    PROF. DR. HALİM DEMİREL

  2. Yüksek titanyum içerikli albit cevherlerinin değerlendirilmesi

    The Evaluation of high titanium content feldspar ories

    MURAT OLGAÇ KANGAL

    Yüksek Lisans

    Türkçe

    Türkçe

    1998

    Maden Mühendisliği ve Madencilikİstanbul Teknik Üniversitesi

    Cevher-Kömür Hazırlama ve Değerlendirme Ana Bilim Dalı

    DOÇ. DR. ALİ GÜNEY

  3. Ultrasonik enerjinin potasyumlu tuz cevherlerinin flotasyonuna etkilerinin araştırılması

    Investigation of the effects of ultrasonic energy on flotation of potassium salt ore

    AKMAL HAMRAYEV

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Maden Mühendisliği ve Madencilikİstanbul Üniversitesi-Cerrahpaşa

    Maden Mühendisliği Ana Bilim Dalı

    PROF. DR. İLGİN KURŞUN

  4. İnce kömürlerin temizlenmesinde köpük flotasyonu ve ağır ortam siklonlarının entegrasyonu

    An Integration of dense medium cycloning and froth flotation for fine coal cleaning

    HALUK ÇELİK

    Doktora

    Türkçe

    Türkçe

    2002

    Maden Mühendisliği ve MadencilikDokuz Eylül Üniversitesi

    Maden Mühendisliği Bölümü

    DOÇ.DR. MEHMET POLAT

  5. Isparta yöresi nadir toprak elementlerinin kazanımı için yeni proseslerin geliştirilmesi

    Development of new processes for beneficiation of Isparta region rare earth elements

    MERT TERZİ

    Doktora

    Türkçe

    Türkçe

    2017

    Maden Mühendisliği ve Madencilikİstanbul Üniversitesi

    Maden Mühendisliği Ana Bilim Dalı

    PROF. DR. İLGİN KURŞUN