Geri Dön

Feature point classification and matching

Öznitelikli nokta sınıflandırması ve eşlemesi

  1. Tez No: 200409
  2. Yazar: AVŞAR POLAT AY
  3. Danışmanlar: PROF. DR. LEVENT ONURAL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Feature Point Elimination, Feature Point Matching, Digital Video Processing, Feature Point Detection, Feature Points
  7. Yıl: 2007
  8. Dil: İngilizce
  9. Üniversite: İhsan Doğramacı Bilkent Üniversitesi
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 214

Özet

Özet yok.

Özet (Çeviri)

A feature point is a salient point which can be separated from its neighborhood. Widely used definitions assume that feature points are corners. However, some non-feature points also satisfy this assumption. Hence, non-feature points, which are highly undesired, are usually detected as feature points. Texture properties around detected points can be used to eliminate non-feature points by determining the distinctiveness of the detected points within their neighborhoods. There are many texture description methods, such as autoregressive models, Gibbs/Markov random field models, time-frequency transforms, etc. To increase the performance of feature point related applications, two new feature point descriptors are proposed, and used in non-feature point elimination and feature point sorting-matching. To have a computationally feasible descriptor algorithm, a single image resolution scale is selected for analyzing the texture properties around the detected points. To create a scale-space, wavelet decomposition is applied to the given images and neighborhood scale-spaces are formed for every detected point. The analysis scale of a point is selected according to the changes in the kurtosis values of histograms which are extracted from the neighborhood scale-space. By using descriptors, the detected iii non-feature points are eliminated, feature points are sorted and with inclusion of conventional descriptors feature points are matched. According to the scores obtained in the experiments, the proposed detection-matching scheme performs more reliable than the Harris detector gray-level patch matching scheme. However, SIFT detection-matching scheme performs better than the proposed scheme.

Benzer Tezler

  1. Matching day and night location images using sift and logistic regression

    Gece ve gündüz lokasyon imgelerinin sıft öznitelikleri ve logistik regresyon ile eşleştirilmesi

    NAZLI TEKİN

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMelikşah Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. KADİR AŞKIN PEKER

  2. Görüntü çerçevelerinde yüz algılama ve veritabanı ile eşleme yapılması

    Face detection in image frames and matching through face database

    GÜLDEN ELEYAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik MühendisliğiAnkara Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ASIM EGEMEN YILMAZ

  3. Seyrek işaret işlemede sınıflandırma uygulamaları ve çekirdek tabanlı yaklaşımlar

    Classification applications of sparse signal processing and kernel based methods

    ABDURRAHMAN YEŞİLOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ENDER METE EKŞİOĞLU

  4. Seyreklik ve sözlük öğrenme yaklaşımlarının sınıflandırma ve yüz tanımaya uygulanması

    Classification and face recognition application of sparsity and dictionary learning based methods

    BERNA AZİZOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ENDER METE EKŞİOĞLU

  5. Derin öğrenme tabanlı görüntü gürültü giderme için yoğun bağlantı kullanan yeni yaklaşımlar

    Densely connected structures in deep learning based image denoising

    VEDAT ACAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. ENDER METE EKŞİOĞLU