Kohezyonlu zeminlerin dinamik davranışına boşluk suyu basıncının etkisi
Başlık çevirisi mevcut değil.
- Tez No: 2225
- Danışmanlar: PROF. DR. ERGÜN TOĞROL
- Tez Türü: Doktora
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1981
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 108
Özet
Ö Z E T Nükleer reaktörler gibi önemli yapıların deprem yüklerine karşı korunabilmeleri ve açık deniz yapılarının dalga yüklerinden zarar görmemeleri, zeminlerin dinamik yükler al tındaki davranışının gerçeğe yakın bir şekilde tahmin edilebilmesi ile mümkündür. Yüksek su muhtevalarından başlayarak konsolide edilen Arnavutköy Kaolini üzerinde, şartları dikkatle kontrol edilen 58 konsolidasyonlu drenaj sız dinamik deney ve 9 konsolidasyonlu drenaj sız statik deney ile 6 adet ödometre dene yi ve standart zemin sınıflandırma deneyleri yapılmıştır. Deney sonuçlarından elde edilen sonuçlar özetle şöyledir: 1) Statik deneylerden elde edilen Kritik Durum Eğrisi ile dinamik yüklemeyi takip eden statik kesme deneylerinden elde edilen Kritik Durum Eğrisi büyük bir uygunluk göstermektedir. 2) Dinamik deneyler sırasında biriken boşluk suyu basıncı, uygulanan sabit ve dinamik yükler cinsinden ifade edilebilir. 3) Dinamik yükleme sırasında biriken boşluk suyu basıncı değerinin artması ile numunenin dinamik yüklemeden sonraki statik kesmede kırıldığı deviatör gerilmenin değeri azal maktadır. 4) Dinamik yüklemeden sonra statik olarak kesilen numuneler aşırı konsolide killere benzer davranış göstermektedirler.II 5) Dinamik yükleme sırasında oluşan plastik deformasyonlar, aynı deney sırasında biriken boşluk suyu basıncı değerinden bulunabilmektedir. 6) Tekrarlı Ödometre deneyleri sonucunda zeminin boşluk oranının statik yüklemeye kıyasla daha küçük bir değere düştüğü gözlenmiştir.
Özet (Çeviri)
III S ÜMMARY In the last two decades the importance of dynamic loading increased due to several reasons. Erection of nuclear po wer plants, the failure of which can cause hazardous results and the building of off-shore structures with unusually high repeated loadings can be counted as the two main reasons. Since the dynamic testing has not been completly standardized yet, it is difficult to compare the results of different researchers. Because of the cumulative nature of behaviour which governs dynamic properties, also errors add up to cause a larger scatter in test results in comparison with those obtained from static tests. There exists a considerable body of data on the behaviour of sands under cyclic loading conditions and engineer ig theories have been developed for particular classes of problems. Recently data for the behaviour of clays under cyclic loading have been obtained. The theories developed for static loading in the early years of soil mechanics treated different aspects of soil behaviour with different tests, formulas and theories. In the year 1958 Roscoe, Schof ield and Wroth brought a new understanding to the relation of water content, shear stress and mean effective stress and explained many aspects of existing theories with just one single theory. The development of theories on dynamic loading seems to follow a similar pattern. First experiments in this new field aimed to bring solu tions to immediate problems that appeared as mentioned above. Then, the rapidly increasing test results made a better understanding of dynamic behaviour possible. So the latest research works in this field try to explain the behaviour of soils with a single fatigue parameter and mostly with modified Critical State theories.IV Tests in this research are conducted on a remoulded, saturated cohesive soil which has highly uniform charac teristics (Arnavutköy kaolini). The liquid limit of this soil is w^ "= %65 and the plastic limit is Wp = %30. A batch of material is mixed at a water content twice the liquid limit and consolidated to 100 kN/nr in a Rowe consolidation cell. Triaxial specimens were obtained from it and consolidated isotropically to pc= 200, p^ 300 and ?p.ç^'400 kN/m2. All tests have been conducted on rormally consolidated samples. Dynamic load is applied to the system with a pneumatic actuater. The air pressure that runs the actuater is con t role d with a solenoid valve. The solenoid valve is commanded by a Servo System Modul. The S SM takes the chosen signal from the function generator, conditions it to a desired amplitude and adds a static potential to it. Then it compares this signal with the Feedback signal coming from the load-cell, and sends a command signal to the solenoid valve to apply the necessary pressure. The func tion generator can generate sinusoidal, triangle and square shaped waves in frequencies ranging from 0.1 Hz to 1.1 kHz. The S SM makes it possible to apply any level of sustained and dynamic load to the specimen. The cell pressure on the load-cell can be balanced with the aid of air pressure and a pressure regulator. To prevent static friction a Dither wave with very high frequency and low amplitude is added to the command signal. This reduces the friction coefficient from its static to its dynamic value and allows the smooth application of the periodic function. Since the load-cell is placed beneath the lower pedestal, the friction at the loading piston doesn't effect the measured vertical load at all. Displacement is measured with a LVDT. The core of the LVDT is directly connected to the actuater rod. Pore pressure is measured with a Pore Water Pressure Transducer. During dynamic testing all data is recorded with recorders. During the static shearing, which follows the dynamic loading a printer has been used. The load increments during these tests are chosen as 20 kN/m2 at the early stages of the tests and 10 kN/m2 near failure.The sustained + dynamic loading is applied to the specimen as long as the residual pore water pressure increased. After the residual pore water pressure comes to an equilibrium state, the specimen is sheared to failure statically. At every load level during static shearing the cease of pore water pressure increase is waited for, before moving to a higher stress level. Failure is defined at the dynamic tests as well as at the static tests after dynamic loading as the stress which causes the specimen to fail along a smooth failure surface. The projection of the results on the p-q plane of the static tests, which are run for comparison, are given in Fig. 4.1.. For the specimens isotropically consolidated at 200 kN/m2 the mean deviator stress at failure is found to be qf = 128 kN/m2 and the results of three tests give the mean effective stress at failure as pf= 162. For the specimens consolidated at 300 kN/m2 qf and p£ are 194 kN/m2 and 247 kN/m2 respectively. For the specimens consolidated at 400 kN/m2 the mean values of stresses at failure can be given as qj=243 kN/m2 and pf= 324 kN/m2. From those values the soil parameter M is found to be M- 0.775. The projection of the Critical State Line on the v - p plane is shown in Fig. 4.2. The mean water content of the specimens consolidated at 200 kN/m2 is 38.1 % ; at 300 kN/m2 consolidation pressure the mean water content is 35.5 % and at 400 kN/m2 consolidation pressure 33.4 %. The residual pore water pressure that builds up during dynamic loading is chosen to be the main parameter that effects the behaviour of dynamically loaded clay and will be denoted in this work by u^^. The sustained load-dynamic load combinations have been varied to contain all possible stress conditions. The results of the dynamic tests are given in Table 4.1, In this Table among u^^n and e
Benzer Tezler
- Suya doygun normal konsolide killi zeminlerin boşluk suyu basıncı değişimi
Pore water pressure variation of saturated normally consolidated clayey soils
UĞUR DAĞDEVİREN
Yüksek Lisans
Türkçe
2005
İnşaat MühendisliğiDumlupınar Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF.DR. MUSTAFA TUNCAN
- Sepiyolit katkısının kumların statik sıvılaşması üzerine etkisinin araştırılması
Investigating the effect of sepiolite suspension on static liquefaction of sands
SİNAN GÜRBÜZ
Yüksek Lisans
Türkçe
2022
İnşaat MühendisliğiEskişehir Osmangazi Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DOÇ. DR. KAMİL BEKİR AFACAN
- Dynamic response of partially saturated sands under foundations
Yapı temelleri altında kısmi doygun kumların dinamik davranışı
SEYED MOHSEN SEYEDI VIAND
Doktora
İngilizce
2021
İnşaat Mühendisliğiİstanbul Teknik ÜniversitesiDeprem Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ESRA ECE BAYAT
- Sıvılaşabilen zeminlerde kazıklı temellerin davranışı, ataletsel ve kinematik etkiler
Behavior of pile foundations in liquefiable soil, inertial and kinematic effects
PINAR SEZİN ÖZTÜRK KARDOĞAN
Doktora
Türkçe
2018
İnşaat MühendisliğiGazi Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. NİHAT SİNAN IŞIK
- Sismik sıvılaşma deney numuneleri için otomatik huni tasarımı ve deney sonuçlarına etkisi
Development of automatic funnel system for cyclic simple shear tests on sandy soils
ŞENAY YENİGÜN
Yüksek Lisans
Türkçe
2018
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ESRA ECE BAYAT
DOÇ. DR. MEHMET MURAT MONKUL