Geri Dön

Dalgacık ağlarıyla elektrokardiyografik aritmilerin sınıflandırılması

Electrocardiogram arrhytmias classification using wavelet networks

  1. Tez No: 251596
  2. Yazar: ABDULLAH KARADAĞ
  3. Danışmanlar: DOÇ. DR. MEHMET KORÜREK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Biyomühendislik, Bioengineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2009
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Biyomedikal Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 73

Özet

Bu çalışmada, kaskad bağlanmış bir dalgacık katmanı ve bir istatistiksel yapay sinir katmanından (?Probabilistik neural network?, PNN) oluşan Adaptive istatistik dalgacık ağının (AİDA,?Adaptive probabilistic wavelet network?) Elektrokardiyagram vurularını sınıflamadaki başarımı, çok bilinen bir sınıflayıcı olan Çok katmanlı almaç (ÇKA, MLP, ? Multi-Layer perceptron?) ile kıyaslanarak ortaya konmaya çalışılmıştır. Ayrıca sistemin başarımını arttırmak maksadıyla giriş parametreleri üzerinde araştırmalar yapılmış ve hem boyut olarak hem de etkinlik olarak giriş parametreleri eniyileştirilmeye çalışılmıştır. Elde edilen giriş parametreleri her iki ağa uygulanarak, kullanılan algoritmadan bağımsız etkileri üzerinde durulmuştur. Bunların yanı sıra kullanılan önişlemlerin de sonuca olan katkıları grafiklerle ortaya konmuştur.Çalışma için kullanılan EKG işaretleri MIT-BIH veri tabanındaki farklı hastalardan alınmıştır. Veri kümesi Normal (N) erken karıncık kasılması (V), erken kulakçık atımı (A), sol dal blok vurusu (L) ve sağ dal blok vurusu (R) aritmilerinden oluşturulmuştur. Eğitim kümesinde her aritmiden 21 vuru, test kümesinde her sınıftan 120 vuru alınmıştır. Yapılan testler sonucunda Dalgacık ağının ortalama duyarlılığı 0.9666, ÇKA'nın ortalama duyarlılığı 0.9550 olarak bulunmuştur. Girişte EKG işaretinin QRS bileşiğine ilave olarak RR aralığının ilave edilmesiyle sınıflama başarımında %18'lik bir iyileştirme yapılmıştır. Bu iyileştirme yapılan çalışmanın en önemli katkısıdır.(L) ve sağ dal blok vurusu (R) aritmilerinden oluşturulmuştur. Eğitim kümesinde her aritmiden 21 vuru, test kümesinde her sınıftan 120 vuru alınmıştır. Yapılan testler sonucunda Dalgacık ağının ortalama duyarlılığı 0.9666, ÇKA'nın ortalama duyarlılığı 0.9550 olarak bulunmuştur. Girişte EKG işaretinin QRS bileşiğine ilave olarak RR aralığının ilave edilmesiyle sınıflama başarımında %18'lik bir iyileştirme yapılmıştır.

Özet (Çeviri)

In this thesis, a cascaded network of wavelets and PNN (Probabilistic Neural Network) is applied as ECG heart beat classifier and is compared to one of the well-known ANN classifiers Multi-layer Perceptron. Moreover, in order to determine the effect of the input vector over the classification performance of both networks, different input vectors in different dimensions have been applied.The ECG data is taken from different subjects at the well-known MIT-BIH heart beat database. There are used Normal (N), premature ventricular contraction (V), atrial premature (A), left bundle branch block (L) and right bundle branch block beats (R) at the training and test set. The training set contains 21 beats per class while the test set contains 120 beats per class. The Wavelet network?s mean sensitivity is 0.9666 while the MLP?s is 0.9550. The result of the performed tests demonstrates that the Wavelet network has a better classification performance over Multi-layer perceptron. The %18 improvement in classificitaion performance is achieved by applying the RR interval together with the QRS complex. This improvement is the main contribution of this work.

Benzer Tezler

  1. Çok kanallı iEEG sinyallerinin evrişimsel sinir ağlarıyla analizi

    Analysis of multi-channell iEEG signals with convolutional neural networks

    MUHİTTİN BAYRAM

    Doktora

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiDicle Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUHAMMET ALİ ARSERİM

  2. Makine öğrenme algoritmalarıyla alt çeneye bağlı kasların yorgunluk analizi ve bruksizm tanı yöntemlerinin geliştirilmesi

    Machine learning algorithms in fatigue analysis of lower jaw muscles and development of bruxism diagnostic methods

    TEMEL SÖNMEZOCAK

    Doktora

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERKAN KURT

  3. Üniversite kampüsündeki araç plaka tanıma ve takibi için matematik ve algoritmik ilkeler

    University campus vehicles number plate recognition and following mathematical and algorithmic principles

    AHMED AMİR KHAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKahramanmaraş Sütçü İmam Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MAHİT GÜNEŞ

  4. Hybrid wavelet-neural network models for time series data

    Zaman serisi verileri için hibrit dalgacık-sinir ağı modelleri

    DENİZ KENAN KILIÇ

    Doktora

    İngilizce

    İngilizce

    2021

    Bilim ve TeknolojiOrta Doğu Teknik Üniversitesi

    Finansal Matematik Ana Bilim Dalı

    PROF. DR. ÖMÜR UĞUR

  5. Classification of lung sounds using wavelet-based neural networks

    Solunum seslerinin dalgacık tabanlı sinir ağları ile sınıflandırılması

    METE YEĞİNER

    Yüksek Lisans

    İngilizce

    İngilizce

    2002

    Tıbbi BiyolojiBoğaziçi Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YASEMİN KAHYA