Dalgacık ağlarıyla elektrokardiyografik aritmilerin sınıflandırılması
Electrocardiogram arrhytmias classification using wavelet networks
- Tez No: 251596
- Danışmanlar: DOÇ. DR. MEHMET KORÜREK
- Tez Türü: Yüksek Lisans
- Konular: Biyomühendislik, Bioengineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2009
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Biyomedikal Mühendisliği Bilim Dalı
- Sayfa Sayısı: 73
Özet
Bu çalışmada, kaskad bağlanmış bir dalgacık katmanı ve bir istatistiksel yapay sinir katmanından (?Probabilistik neural network?, PNN) oluşan Adaptive istatistik dalgacık ağının (AİDA,?Adaptive probabilistic wavelet network?) Elektrokardiyagram vurularını sınıflamadaki başarımı, çok bilinen bir sınıflayıcı olan Çok katmanlı almaç (ÇKA, MLP, ? Multi-Layer perceptron?) ile kıyaslanarak ortaya konmaya çalışılmıştır. Ayrıca sistemin başarımını arttırmak maksadıyla giriş parametreleri üzerinde araştırmalar yapılmış ve hem boyut olarak hem de etkinlik olarak giriş parametreleri eniyileştirilmeye çalışılmıştır. Elde edilen giriş parametreleri her iki ağa uygulanarak, kullanılan algoritmadan bağımsız etkileri üzerinde durulmuştur. Bunların yanı sıra kullanılan önişlemlerin de sonuca olan katkıları grafiklerle ortaya konmuştur.Çalışma için kullanılan EKG işaretleri MIT-BIH veri tabanındaki farklı hastalardan alınmıştır. Veri kümesi Normal (N) erken karıncık kasılması (V), erken kulakçık atımı (A), sol dal blok vurusu (L) ve sağ dal blok vurusu (R) aritmilerinden oluşturulmuştur. Eğitim kümesinde her aritmiden 21 vuru, test kümesinde her sınıftan 120 vuru alınmıştır. Yapılan testler sonucunda Dalgacık ağının ortalama duyarlılığı 0.9666, ÇKA'nın ortalama duyarlılığı 0.9550 olarak bulunmuştur. Girişte EKG işaretinin QRS bileşiğine ilave olarak RR aralığının ilave edilmesiyle sınıflama başarımında %18'lik bir iyileştirme yapılmıştır. Bu iyileştirme yapılan çalışmanın en önemli katkısıdır.(L) ve sağ dal blok vurusu (R) aritmilerinden oluşturulmuştur. Eğitim kümesinde her aritmiden 21 vuru, test kümesinde her sınıftan 120 vuru alınmıştır. Yapılan testler sonucunda Dalgacık ağının ortalama duyarlılığı 0.9666, ÇKA'nın ortalama duyarlılığı 0.9550 olarak bulunmuştur. Girişte EKG işaretinin QRS bileşiğine ilave olarak RR aralığının ilave edilmesiyle sınıflama başarımında %18'lik bir iyileştirme yapılmıştır.
Özet (Çeviri)
In this thesis, a cascaded network of wavelets and PNN (Probabilistic Neural Network) is applied as ECG heart beat classifier and is compared to one of the well-known ANN classifiers Multi-layer Perceptron. Moreover, in order to determine the effect of the input vector over the classification performance of both networks, different input vectors in different dimensions have been applied.The ECG data is taken from different subjects at the well-known MIT-BIH heart beat database. There are used Normal (N), premature ventricular contraction (V), atrial premature (A), left bundle branch block (L) and right bundle branch block beats (R) at the training and test set. The training set contains 21 beats per class while the test set contains 120 beats per class. The Wavelet network?s mean sensitivity is 0.9666 while the MLP?s is 0.9550. The result of the performed tests demonstrates that the Wavelet network has a better classification performance over Multi-layer perceptron. The %18 improvement in classificitaion performance is achieved by applying the RR interval together with the QRS complex. This improvement is the main contribution of this work.
Benzer Tezler
- Çok kanallı iEEG sinyallerinin evrişimsel sinir ağlarıyla analizi
Analysis of multi-channell iEEG signals with convolutional neural networks
MUHİTTİN BAYRAM
Doktora
Türkçe
2021
Elektrik ve Elektronik MühendisliğiDicle ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUHAMMET ALİ ARSERİM
- Makine öğrenme algoritmalarıyla alt çeneye bağlı kasların yorgunluk analizi ve bruksizm tanı yöntemlerinin geliştirilmesi
Machine learning algorithms in fatigue analysis of lower jaw muscles and development of bruxism diagnostic methods
TEMEL SÖNMEZOCAK
Doktora
Türkçe
2021
Elektrik ve Elektronik MühendisliğiYıldız Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DOÇ. DR. SERKAN KURT
- Üniversite kampüsündeki araç plaka tanıma ve takibi için matematik ve algoritmik ilkeler
University campus vehicles number plate recognition and following mathematical and algorithmic principles
AHMED AMİR KHAN
Yüksek Lisans
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKahramanmaraş Sütçü İmam ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MAHİT GÜNEŞ
- Hybrid wavelet-neural network models for time series data
Zaman serisi verileri için hibrit dalgacık-sinir ağı modelleri
DENİZ KENAN KILIÇ
Doktora
İngilizce
2021
Bilim ve TeknolojiOrta Doğu Teknik ÜniversitesiFinansal Matematik Ana Bilim Dalı
PROF. DR. ÖMÜR UĞUR
- Classification of lung sounds using wavelet-based neural networks
Solunum seslerinin dalgacık tabanlı sinir ağları ile sınıflandırılması
METE YEĞİNER
Yüksek Lisans
İngilizce
2002
Tıbbi BiyolojiBoğaziçi ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
DOÇ. DR. YASEMİN KAHYA