Graph based sequence clustering through multiobjective evolutionary algorithms
Çok amaçlı evrimsel algoritmalarla çizge tabanlı sıralı dizi demetleme
- Tez No: 251740
- Danışmanlar: YRD. DOÇ. DR. A. ŞİMA ETANER UYAR
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2008
- Dil: İngilizce
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 59
Özet
Bu çalışmada, ikili benzerlikler olarak ifade edilen sıralı dizilerin çokamaçlı evrimsel algoritmalar kullanılarak demetlenmesi üzerine odaklanılmıştır. Sıralı dizilerden oluşan bir veri kümesi bir yönsüz, ağırlıklı bir çizge olarak ifade edildiğinde, sıralı diziler çizge üzerindeki düğümlere, onlar arası benzerliklerse kenar uzunluklarına denk düşerler. Bu durumda sıralı dizi demetleme problemi evrimsel algoritmalarla çözülebilecek NP-zor çizge bölümleme problemine dönüştürülür. Sıralı dizilerin demetlenmesi için çizge tabanlı bir çokamaçlı evrimsel algoritma önerilmiş, algoritmanın evrimsel operatörleri, amaç fonksiyonları, genetik temsil ve başlangıç durumuna getirme yöntemi ve temel çokamaçlı evrimsel algoritma bileşenleri değiştirilerek çeşitli varyasyonları gerçeklenmiştir. Sıralı dizi demetleme problemi için en uygun varyasyonun belirlenmesi istatiksel testler ve demetleme kalite göstergeleri aracılığıyla sağlanmıştır.
Özet (Çeviri)
This dissertation focuses on the clustering of sequences represented as pairwise similarities through multiobjective evolutionary algorithms. The sequence can be expressed through weighted, undirected graphs where each sequence becomes a vertex of the graph and the pairwise similarities or dissimilarities form the edges connecting the corresponding vertices in the graph. Through this representation approach, the sequence clustering problem becomes equivalent to graph partitioning which is an NP-hard problem and can be solved through evolutionary algorithms. To cluster sequences a graph based multiobjective evolutionary algorithm is proposed. By changing the evolutionary operators, objective functions, genetic representation and initialization method different variations of this algorithm is implemented. In order to determine the best variation for the sequence clustering problem quality indicators with statistical tests and cluster validation indices are used.
Benzer Tezler
- Grup teknolojisi imalat sistemleri tasarımı için bir metodoloji ve bu metodolojinin endüstride uygulanması
Başlık çevirisi yok
NEVİN AYDIN
Doktora
Türkçe
1998
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. M. BÜLENT DURMUŞOĞLU
- Hücresel imalatın başlangıç aşamaları için uzman sistem yaklaşımı
An Expert systems approach to the early stages of cellular manufacturing systems design
UFUK CEBECİ
- Predicting the academic influence and trending research topics
Akademik etkiyi ve araştırma konularının eğilimini tahminleme
MURAT YÜKSELEN
Doktora
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. PINAR KARAGÖZ
DR. ÖĞR. ÜYESİ ALEV MUTLU
- Kümeleme yaklaşımı ile model tabanlı test önceliklerinin belirlenmesi
Determination of model based test priorities by clustering approach
NİDA GÖKÇE
Doktora
Türkçe
2012
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMuğla ÜniversitesiMatematik Ana Bilim Dalı
YRD. DOÇ. DR. BEKİR TANER DİNÇER
- Novel centrality, topology and hierarchical-aware link prediction in dynamic networks
Dinamik ağlarda merkezilik, topoloji ve hiyerarşik tabanlı bağlanti tahmini
ABUBAKHARI SSERWADDA
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. YUSUF YASLAN
YRD. DOÇ. ALPER ÖZCAN